Inception论文学习(三)+吴恩达笔记
Inception 网络(Inception network)
在上节笔记中,你已经见到了所有的Inception网络基础模块。在本节笔记中,我们将学习如何将这些模块组合起来,构筑你自己的Inception网络。
Inception模块会将之前层的**或者输出作为它的输入,作为前提,这是一个28×28×192的输入,和我们之前笔记中的一样。
我们详细分析过的例子是,先通过一个1×1的层,再通过一个5×5的层,1×1的层可能有16个通道,而5×5的层输出为28×28×32,共32个通道,这就是上个笔记最后讲到的我们处理的例子。
那么同样的道理,为了在这个3×3的卷积层中节省运算量,你也可以做相同的操作,这样的话3×3的层将会输出28×28×128。
其实还可以直接通过一个1×1的卷积层,这时就不必在后面再跟一个1×1的层了,这样的话过程就只有一步,假设这个层的输出是28×28×64。
最后是池化层。
这里我们要做些有趣的事情,为了能在最后将这些输出都连接起来,我们会使用same类型的padding来池化,使得输出的高和宽依然是28×28,这样才能将它与其他输出连接起来。但注意,如果你进行了最大池化,即便用了same padding,3×3的过滤器,stride为1,其输出将会是28×28×192,其通道数或者说深度与这里的输入(通道数)相同。
所以看起来它会有很多通道,我们实际要做的就是再加上一个1×1的卷积层,去进行我们在1×1卷积层的笔记里所介绍的操作,将通道的数量缩小,缩小到28×28×32。也就是使用32个维度为1×1×192的过滤器,所以输出的维度其通道数缩小为32。这样就避免了最后输出时,池化层占据所有的通道。
最后,将这些方块全都连接起来。在这过程中,把得到的各个层的通道都加起来,最后得到一个28×28×256的输出。通道连接实际就是之前笔记中看到过的,把所有方块连接在一起的操作。这就是一个Inception模块,而Inception网络所做的就是将这些模块都组合到一起。
这是GoogLeNet图片,你会发现图中有许多重复的模块,可能整张图看上去很复杂,但如果你只截取其中一个环节,就会发现这是在前一图中所见的Inception模块。
我们深入看看里边的一些细节,这是另一个Inception模块(编号2),这也是一个Inception模块(编号3)。这里有一些额外的最大池化层(编号6)来修改output高和宽的维度。这是另外一个Inception模块(编号4),这是另外一个最大池化层(编号7),它改变了高和宽。而这里又是另一个Inception模块(编号5)。
所以Inception网络只是很多这些你学过的模块在不同的位置重复组成的网络,所以如果你理解了之前所学的Inception模块,你就也能理解Inception网络。
你就会发现,这里其实还有一些分支,我现在把它们加上去。所以这些分支有什么用呢?在网络的最后几层,通常称为全连接层,在它之后是一个softmax层(编号1)来做出预测,这些分支(编号2)所做的就是通过隐藏层(编号3)来做出预测,所以这其实是一个softmax输出(编号2),这(编号1)也是。这是另一条分支(编号4),它也包含了一个隐藏层,通过一些全连接层,然后有一个softmax来预测,输出结果的标签。
你应该把它看做Inception网络的一个细节,它确保了即便是隐藏单元和中间层(编号5)也参与了特征计算,它们也能预测图片的分类。它在Inception网络中,起到一种调整的效果,并且能防止网络发生过拟合。
还有这个特别的Inception网络是由Google公司的作者所研发的,它被叫做GoogleLeNet,这个名字是为了向LeNet网络致敬。
在之前的笔记中你应该了解了LeNet网络。我觉得这样非常好,因为深度学习研究人员是如此重视协作,深度学习工作者对彼此的工作成果有一种强烈的敬意。
最后,有个有趣的事实,Inception网络这个名字又是缘何而来呢?
Inception的论文特地提到了这个模因(meme,网络用语即“梗”),就是“我们需要走的更深”(We need to go deeper),论文还引用了这个网址(http://knowyourmeme.com/memes/we-need-to-go-deeper),连接到这幅图片上,如果你看过Inception(盗梦空间)这个电影,你应该能看懂这个由来。作者其实是通过它来表明了建立更深的神经网络的决心,他们正是这样构建了Inception。我想一般研究论文,通常不会引用网络流行模因(梗),但这里显然很合适。
对上图说明如下:
(1)GoogLeNet采用了模块化的结构(Inception结构),方便增添和修改;
(2)网络最后采用了average pooling(平均池化)来代替全连接层,该想法来自NIN(Network in Network),事实证明这样可以将准确率提高0.6%。但是,实际在最后还是加了一个全连接层,主要是为了方便对输出进行灵活调整;
(3)虽然移除了全连接,但是网络中依然使用了Dropout ;
(4)为了避免梯度消失,网络额外增加了2个辅助的softmax用于向前传导梯度(辅助分类器)。辅助分类器是将中间某一层的输出用作分类,并按一个较小的权重(0.3)加到最终分类结果中,这样相当于做了模型融合,同时给网络增加了反向传播的梯度信号,也提供了额外的正则化,对于整个网络的训练很有裨益。而在实际测试的时候,这两个额外的softmax会被去掉。v
注:上表中的“#3x3 reduce”,“#5x5 reduce”表示在3x3,5x5卷积操作之前使用了1x1卷积的数量。
GoogLeNet网络结构明细表解析如下:
0、输入
原始输入图像为224x224x3,且都进行了零均值化的预处理操作(图像每个像素减去均值)。
1、第一层(卷积层)
使用7x7的卷积核(滑动步长2,padding为3),64通道,输出为112x112x64,卷积后进行ReLU操作
经过3x3的max pooling(步长为2),输出为((112 - 3+1)/2)+1=56,即56x56x64,再进行ReLU操作
2、第二层(卷积层)
使用3x3的卷积核(滑动步长为1,padding为1),192通道,输出为56x56x192,卷积后进行ReLU操作
经过3x3的max pooling(步长为2),输出为((56 - 3+1)/2)+1=28,即28x28x192,再进行ReLU操作
3a、第三层(Inception 3a层)
分为四个分支,采用不同尺度的卷积核来进行处理
(1)64个1x1的卷积核,然后RuLU,输出28x28x64
(2)96个1x1的卷积核,作为3x3卷积核之前的降维,变成28x28x96,然后进行ReLU计算,再进行128个3x3的卷积(padding为1),输出28x28x128
(3)16个1x1的卷积核,作为5x5卷积核之前的降维,变成28x28x16,进行ReLU计算后,再进行32个5x5的卷积(padding为2),输出28x28x32
(4)pool层,使用3x3的核(padding为1),输出28x28x192,然后进行32个1x1的卷积,输出28x28x32。
将四个结果进行连接,对这四部分输出结果的第三维并联,即64+128+32+32=256,最终输出28x28x256
3b、第三层(Inception 3b层)
(1)128个1x1的卷积核,然后RuLU,输出28x28x128
(2)128个1x1的卷积核,作为3x3卷积核之前的降维,变成28x28x128,进行ReLU,再进行192个3x3的卷积(padding为1),输出28x28x192
(3)32个1x1的卷积核,作为5x5卷积核之前的降维,变成28x28x32,进行ReLU计算后,再进行96个5x5的卷积(padding为2),输出28x28x96
(4)pool层,使用3x3的核(padding为1),输出28x28x256,然后进行64个1x1的卷积,输出28x28x64。
将四个结果进行连接,对这四部分输出结果的第三维并联,即128+192+96+64=480,最终输出输出为28x28x480
第四层(4a,4b,4c,4d,4e)、第五层(5a,5b)……,与3a、3b类似,在此就不再重复。
从GoogLeNet的实验结果来看,效果很明显,差错率比MSRA、VGG等模型都要低,对比结果如下表所示:
GoogLeNet:2014ILSVRC分类任务冠军。22层
创新点:用全局平均池化层取代全连接层,借鉴了NIN(network in network)的做法
MLP网络能够更好的拟合局部特征,也增强了输入局部的表达能力,NIN不在分类层前使用全连接,而是采用全局平均池化。 提高深度网络效果的方式是:增大网络尺寸。但是带来了更多的参数和计算资源需求。改善方案:1) 引入稀疏性2) Hebbin原则:两个神经元同步激发,则他们之间的权重增加,如果单独激发,则权重减少。GoogleNet就是利用Inception自动构建非一致结构的神经网络。