【JVM优化】JVM内存模型、性能调优和应用性能管理

1. JVM

【JVM优化】JVM内存模型、性能调优和应用性能管理

JVM是一个虚拟运行环境、它的工作是管理运行Java应用程序的运行时环境。JVM解放了程序员,使程序员不必再关系对象的生命周期,使程序员不必再关心应该在何时释放内存。

2. JVM内存模型

【JVM优化】JVM内存模型、性能调优和应用性能管理
jvm内存主要由程序计数器,java栈,java堆,本地方法栈、方法区部分组成。 
其中JVM在1.8版本开始不再有方法区(PermGen),原方法区存储的信息被分成两部分:1、虚拟机加载的类信息,2、运行时常量池。分别被移动到了元空间和堆中。

【JVM优化】JVM内存模型、性能调优和应用性能管理

【JVM优化】JVM内存模型、性能调优和应用性能管理   >>(JDK1.8)>>   【JVM优化】JVM内存模型、性能调优和应用性能管理

2.1 堆(Heap)

划分:新生代和老年代;新生代又有Eden空间、From Survivor空间、To Survivor空间三部分。
堆是java虚拟机所管理的内存中最大的一块内存区域,也是被各个线程共享的内存区域,该内存区域存放了对象实例及数组(但不是所有的对象实例都在堆中)。其大小通过-Xms(最小值)和-Xmx(最大值)参数设置(最大最小值都要小于1G),前者为启动时申请的最小内存,默认为操作系统物理内存的1/64,后者为JVM可申请的最大内存,默认为物理内存的1/4,默认当空余堆内存小于40%时,JVM会增大堆内存到-Xmx指定的大小,可通过-XX:MinHeapFreeRation=来指定这个比列;当空余堆内存大于70%时,JVM会减小堆内存的大小到-Xms指定的大小,可通过XX:MaxHeapFreeRation=来指定这个比列,当然为了避免在运行时频繁调整Heap的大小,通常-Xms与-Xmx的值设成一样。堆内存 = 新生代+老生代+持久代。在我们垃圾回收的时候,我们往往将堆内存分成新生代和老生代(大小比例1:2),新生代中由Eden和Survivor0,Survivor1组成,三者的比例是8:1:1,新生代的回收机制采用复制算法,在Minor GC的时候,我们都留一个存活区用来存放存活的对象,真正进行的区域是Eden+其中一个存活区,当我们的对象时长超过一定年龄时(默认15,可以通过参数设置),将会把对象放入老生代,当然大的对象会直接进入老生代。老生代采用的回收算法是标记整理算法。

回收算法
复制算法:主要用在新生代的回收上,通过from区和to区的来回拷贝。
标记清除/标记整理:主要用在老生代回收上,通过根搜的标记然后清除或者整理掉不需要的对象。

具体的垃圾收集器
新生代收集器:有Serial收集器、ParNew收集器、Parallel Scavenge收集器。
老生代收集器:Serial Old收集器、Parallel Old收集器、CMS收集器、G1收集器

【JVM优化】JVM内存模型、性能调优和应用性能管理

2.2. 方法区(永久代)——>元数据区(元空间)Metaspace

方法区也称"永久代",它用于存储虚拟机运行时常量池、加载的类信息(类的版本、字段、方法、出入口)、final常量、static静态变量、即时编译器编译后Class字节码等数据,是各个线程共享的内存区域。默认最小值为16MB,最大值为64MB(64位JVM由于指针膨胀,默认是85M),可以通过-XX:PermSize 和 -XX:MaxPermSize 参数限制方法区的大小。它是一片连续的堆空间,永久代的垃圾收集是和老年代(old generation)捆绑在一起的,因此无论谁满了,都会触发永久代和老年代的垃圾收集。不过,一个明显的问题是,当JVM加载的类信息容量超过了参数-XX:MaxPermSize设定的值时,应用将会报OOM的错误。参数是通过-XX:PermSize和-XX:MaxPermSize来设定的
运行时常量池(Runtime Constant Pool):是方法区的一部分,Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池,用于存放编译器生成的各种符号引用,这部分内容将在类加载后放到方法区的运行时常量池中。
从JDK7开始移除永久代(但并没有移除,还是存在),贮存在永久代的一部分数据已经转移到了Java Heap或者是Native Heap:符号引用(Symbols)转移到了native heap;字面量(interned strings)转移到了java heap;类的静态变量(class statics)转移到了java heap。
随着JDK8的到来,JVM不再有方法区(PermGen),原方法区存储的信息被分成两部分:1、虚拟机加载的类信息,2、运行时常量池。分别被移动到了元空间和堆中。

为什么要废除1.7的永久区?
1.对永久代的调优过程非常困难,永久代的大小很难确定,其中涉及到太多因素,如类的总数,常量池大小和方法数量等,而且永久代的数据可能会随着每一次Full GC而发生移动。
2.而在jdk1.8中,类的元数据保存在本地内存中,元空间的最大可分配空间就是系统可用内存空间。

2.1 运行时常量池:(jdk8中放在堆中)
运行时常量池(Runtime Constant Pool)是方法区的一部分。Class 文件中除了有类的版本、字段、方法、接口等描述等信息外,还有一项信息是常量池(Constant PoolTable),用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。 
a、jvm在执行某个类的时候,必须经过加载、连接、初始化,而连接又包括验证、准备、解析三个阶段。而当类加载到内存中后,jvm就会将class常量池中的内容存放到运行时常量池中,由此可知,运行时常量池也是每个类都有一个。
b、运行时常量池相对于Class文件常量池的另外一个重要特征是具备动态性,Java 语言并不要求常量一定只能在编译期产生,也就是并非预置入Class 文件中常量池的内容才能进入方法区运行时常量池,运行期间也可能将新的常量放入池中,这种特性被开发人员利用得比较多的便是String 类的intern() 方法。 
c、既然运行时常量池是方法区的一部分,自然会受到方法区内存的限制,当常量池无法再申请到内存时会抛出OutOfMemoryError 异常 
d、符号引用和字面量
字面量(literal)是用于表达源代码中一个固定值的表示法,int i = 1;把整数1赋值给int型变量i,整数1就是Java字面量, String s = "abc";中的abc也是字面量
符号引用以一组符号来描述所引用的目标, 符号可以是任何形式的字面量, 只要使用时能够无歧义的定位到目标即可. 例如, 在Java中, 一个Java类将会编译成一个class文件. 在编译时, Java类并不知道所引用的类的实际地址, 因此只能使用符号引用来代替. 比如org.simple.People类引用了org.simple.Language类, 在编译时People类并不知道Language类的实际内存地址, 因此只能使用符号org.simple.Language来表示Language类的地址.

f、直接引用
直接指向目标的指针.(个人理解为: 指向方法区中类对象, 类变量和类方法的指针)
直接引用 程序运行时可以定位到引用的东西(类, 对象, 变量或者方法等)的地址.

总结
1.全局常量池在每个VM中只有一份,存放的是字符串常量的引用值。(比如 String s="abc",堆中生成驻留字符串的实例对象"abc",然后将这个对象的引用存入全局常量池)
2.class常量池是在编译的时候每个class都有的,在编译阶段,存放的是常量的符号引用。
3.运行时常量池是在类加载完成之后,将每个class常量池中的符号引用值转存到运行时常量池中,也就是说,每个class都有一个运行时常量池,类在解析之后,将符号引用替换成直接引用,与全局常量池中的引用值保持一致。
编译之后,在该类的class常量池中存放一些符号引用,然后类加载之后,将class常量池中存放的符号引用转存到运行时常量池中,最后在解析阶段,要把运行时常量池中的符号引用替换成直接引用,与全局常量池中的引用值保持一致。

2.3. 虚拟机栈(JVM Stack)

描述的是java方法执行的内存模型:每个方法被执行的时候都会创建一个"栈帧",用于存储局部变量表(包括参数)、操作栈、方法出口等信息。每个方法被调用到执行完的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。声明周期与线程相同,是线程私有的。栈帧由三部分组成:局部变量区、操作数栈、帧数据区。局部变量区被组织为以一个字长为单位、从0开始计数的数组,和局部变量区一样,操作数栈也被组织成一个以字长为单位的数组。但和前者不同的是,它不是通过索引来访问的,而是通过入栈和出栈来访问的,可以看作为临时数据的存储区域。除了局部变量区和操作数栈外,java栈帧还需要一些数据来支持常量池解析、正常方法返回以及异常派发机制。这些数据都保存在java栈帧的帧数据区中。

局部变量表: 存放了编译器可知的各种基本数据类型、对象引用(引用指针,并非对象本身),其中64位长度的long和double类型的数据会占用2个局部变量的空间,其余数据类型只占1个。局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在栈帧中分配多大的局部变量是完全确定的,在运行期间栈帧不会改变局部变量表的大小空间。

【JVM优化】JVM内存模型、性能调优和应用性能管理

2.4.本地方法栈(Native Stack)

与虚拟机栈基本类似,区别在于虚拟机栈为虚拟机执行的java方法服务,而本地方法栈则是为Native方法服务。(栈的空间大小远远小于堆)

2.5.程序计数器(PC Register)

是最小的一块内存区域,它的作用是当前线程所执行的字节码的行号指示器,在虚拟机的模型里,字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、异常处理、线程恢复等基础功能都需要依赖计数器完成。

2.6.直接内存

直接内存并不是虚拟机内存的一部分,也不是Java虚拟机规范中定义的内存区域。jdk1.4中新加入的NIO,引入了通道与缓冲区的IO方式,它可以调用Native方法直接分配堆外内存,这个堆外内存就是本机内存,不会影响到堆内存的大小。