StarGAN v2 阅读笔记

StarGAN v2 阅读笔记

@article{RN12,
author = {Choi, Yunjey and Uh, Youngjung and Yoo, Jaejun and Ha, Jung-Woo},
title = {StarGAN v2: Diverse Image Synthesis for Multiple Domains},
journal = {arXiv preprint arXiv:1912.01865},
year = {2019},
type = {Journal Article}
}

Contribution

StarGAN v2 在 StarGAN 的基础上进行了改进,解决了由一个域图像转换到目标域的多种图像,并支持多个目标域的问题。

StarGAN v2 阅读笔记

Important Points

  1. 设计了Mapping Network用于生成风格编码,摆脱了标签的束缚;
  2. 用风格编码器指导Mapping Network进行目标风格学习,可以实现目标域下多风格图像的转换;
  3. 公开了动物面部数据集AFQH,实现了图像翻译下较好的结果。

Motivation

Existing methods have limited diversity or multiple models for all domains, which are the issues that StarGAN v2 trys to address.