ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

  理解出错之处望不吝指正。

  本文模型叫做MemTrack。本文的模型是基于相似学习的,主要有两个创新点:①.设计一个动态记忆网络;②.使用门控剩余模板和初始模板,生成最终的匹配模板。模型的整体架构如下:

ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

 

  • 大致流程

  ①.对当前帧ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记,使用上一帧的预测位置进行剪裁,得到搜索区域ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

  ②.对ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记进行特征提取,这里特征提取模块使用和SiamFC一样的结构;

  ③.使用注意力机制,获得输出ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记,使LSTM的输入更多的注意object,而不是background;

  ④.将ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记和LSTM的上一个隐层状态ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记一起输入LSTM,得到隐层状态ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记和记忆库控制信号ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记(包括read key ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记、read strength ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记、衰减率ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记和一些偏置项);

  ⑤.使用read key ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记、read strength ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记获得read weight ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记,再进一步获得剩余模板ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

  ⑥.对剩余模板ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记和初始模板ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记进行加权累加,得到最终匹配模板ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

  ⑦.使用最终匹配模板ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记与搜索区域ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记进行相似度计算,得到当前帧的预测结果,将结果进行剪裁得到ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

  ⑧.对ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记进行特征提取,得到新的匹配模板ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记,根据一些规则,将其写入动态记忆库。

 

  • 注意力机制

  先对ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记进行特征提取,得到ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记,使用ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记的池化核对ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记进行AvgPooling得到ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记,对ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记分为ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记个patch,第ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记个patch用ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记表示,根据下式得到输出ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

    ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

  其中,ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记通过下式计算:

    ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

    ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

  效果如下图:

ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

 

  • LSTM控制

  如图所示:

    ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

 

  • Memory Reading

  通过下式得到read key ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记、read strength ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记(用于表示read key的置信度):

    ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

    ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

  再计算出read weight ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

    ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

  这里的ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记是用于计算余弦相似度的函数。最终得到剩余模板:

    ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

 

  • 获得最终模板

  最终模板可以通过下式得到:

    ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

  其中ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记,是通过LSTM得到的。

 

  • Memory Writing

  得到新的匹配模板ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记后,根据以下三条准则,将其写入到动态记忆库中:

    ①.如果ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记的置信度低(包含大量背景信息),则不进行write;

    ②.如果ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记和以前帧相比变化不大,则用其替代以前帧;

    ③.如果ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记和以前帧相比变化较大,则用其覆盖动态记忆库中一个新位置。

  文中定义了一个write weight:

    ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

  这里的ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记代表零向量,ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记是read weight,ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记是allocation weight(负责指定write的位置)。ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记是“写门”,ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记是“读门”,ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记是“分配门”,是通过LSTM计算得到的:

    ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

  上式满足ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

  allocation weight通过下式计算:

    ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

  其中ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记,用于表示动态记忆库中不同位置的访问频次,ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记是衰减因子。

  将write weight和擦除因子(erase factor)结合,进行动态记忆库的写入:

    ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

   其中ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记是LSTM得到的衰减率,ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

 

  • 实验

  OTB-2015

ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

  OTB-2013

ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

  VOT-2016

ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记

  速度

ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记