Single Image Dehazing via Conditional Generative Adversarial Network

原文

贡献

  1. 提出了一种基于条件生成对抗神经网络的去雾网络
  2. 生成网络采用编码器——解码器的结构,以捕获更多有用信息
  3. 新的损失函数,包括:
  4. 合成包括室内和室外的有雾图像数据集。

生成网络的结构
Single Image Dehazing via Conditional Generative Adversarial Network
生成网络是输入有雾图像生成清晰图像,因此不仅要保留图像的结构和细节还要去雾。受ResNet和U-Net启发,在生成网络由编码器和解码器组成,使用对称层的跳过连接(skip connection)来突**码过程中的信息瓶颈,并使用求和方法(summation method )捕获更多有用信息.
编码过程主要基于下采样操作,并向解码过程的对称层提供特征映射;
解码过程主要使用上采样操作和非线性空间转移。
配置
Single Image Dehazing via Conditional Generative Adversarial Network
鉴别网络的结构
Single Image Dehazing via Conditional Generative Adversarial Network
配置
Single Image Dehazing via Conditional Generative Adversarial Network
生成网络的损失函数
Single Image Dehazing via Conditional Generative Adversarial Network
1.对抗损失
Single Image Dehazing via Conditional Generative Adversarial Network
仅使用该损失会产生伪像及颜色失真其去雾不彻底。
2.感知损失
Single Image Dehazing via Conditional Generative Adversarial Network
使用感知损失帮助细节恢复和去雾,但它在恢复的图像中引入了伪像
3. 像素级损失
Single Image Dehazing via Conditional Generative Adversarial Network
去除伪像,保留细节
鉴别网络的损失函数
Single Image Dehazing via Conditional Generative Adversarial Network
不同损失函数对模型的影响
Single Image Dehazing via Conditional Generative Adversarial Network
Single Image Dehazing via Conditional Generative Adversarial Network
在合成图像上的结果对比

Single Image Dehazing via Conditional Generative Adversarial Network
在真实图像上的结果对比
Single Image Dehazing via Conditional Generative Adversarial Network

Single Image Dehazing via Conditional Generative Adversarial Network
Single Image Dehazing via Conditional Generative Adversarial Network