小波变换-习题

题1

请根据课本中Z变换的定义,证明如下结论。

  1.  x(n)\ x(n)的Z变换为X(z)X(z),则(1)nx(n){(-1)}^nx(n)的Z变换为X(z)X(-z)
  2.  x(n)\ x(n)的Z变换为X(z)X(z),则x(n)x(-n)的Z变换为X(1/z)X(1/z)
  3.  x(n)\ x(n)的Z变换为X(z)X(z),则有课本280页公式7.1.2
    小波变换-习题

答:
(1)
已知 x(n)\ x(n)的Z变换如下:
X(z)=x(n)znX\left( z \right) = \sum\limits_{ - \infty }^\infty {x\left( n \right){z^{ - n}}}
(1)nx(n){\left( { - 1} \right)^n}x\left( n \right)的Z变换如下:
(1)nx(n)zn=(1)nx(n)zn=x(n)(z)n=X(z)\sum\limits_{ - \infty }^\infty {{{\left( { - 1} \right)}^n}x\left( n \right){z^{ - n}}} = \sum\limits_{ - \infty }^\infty {{{\left( { - 1} \right)}^{ - n}}x\left( n \right){z^{ - n}}} = \sum\limits_{ - \infty }^\infty {x\left( n \right){{\left( { - z} \right)}^{ - n}}} = X\left( { - z} \right)得证

(2)
X(z)X(-z)的Z变换如下:
x(n)zn\sum\limits_{ - \infty }^\infty {x\left( { - n} \right){z^{ - n}}}
令m=-n,则上式变为:
x(m)zm=x(m)(1z)m=X(1z)\sum\limits_{ - \infty }^\infty {x\left( m \right){z^m}} = \sum\limits_{ - \infty }^\infty {x\left( m \right){{\left( {\frac{1}{z}} \right)}^{ - m}}} = X\left( {\frac{1}{z}} \right)得证

题2

G1(z)=z2K+1G0(z1)G_1\left(z\right)=-z^{-2K+1}G_0\left(-z^{-1}\right)成立,请证明g1(n)=(1)ng0(2K1n)g_1\left(n\right)=\left(-1\right)^ng_0(2K-1-n)

证:
已知Z变换对: g0(n)G0(z){g_0}\left( n \right) \Leftrightarrow {G_0}\left( z \right)
由第一题第二问结论x(n)X(z1)x\left( { - n} \right) \Leftrightarrow X\left( {{z^{ - {\rm{1}}}}} \right)得到:g0(n)G0(z1){g_0}\left( { - n} \right) \Leftrightarrow {G_0}\left( {{z^{ - {\rm{1}}}}} \right)

由Z变换的平移性质x(n+k)zkX(z1)x\left( {n{\rm{ + }}k} \right) \Leftrightarrow {z^k}X\left( {{z^{ - {\rm{1}}}}} \right)得到:g0((n2K+1))z2K+1G0(z1){g_0}\left( { - \left( {n - 2K{\rm{ + }}1} \right)} \right) \Leftrightarrow {z^{ - {\rm{2}}K{\rm{ + }}1}}{G_0}\left( {{z^{ - {\rm{1}}}}} \right)

由第一题第一问结论(1)nx(n)X(z){\left( {{\rm{ - 1}}} \right)^n}x\left( n \right) \Leftrightarrow X\left( { - z} \right)得到:
(1)ng0(2K1n)(z)2K+1G0((z)1){\left( { - 1} \right)^n}{g_0}\left( {2K - 1 - n} \right) \Leftrightarrow {\left( { - z} \right)^{ - {\rm{2}}K{\rm{ + }}1}}{G_0}\left( {{{\left( { - z} \right)}^{ - {\rm{1}}}}} \right)

由于2K+1- {\rm{2}}K{\rm{ + }}1是奇数,则上式变为:
(1)ng0(2K1n)z2K+1G0(z1){\left( { - 1} \right)^n}{g_0}\left( {2K - 1 - n} \right) \Leftrightarrow - {z^{ - {\rm{2}}K{\rm{ + }}1}}{G_0}\left( { - {z^{ - {\rm{1}}}}} \right)

由于g1(n)G1(z){g_{\rm{1}}}\left( n \right) \Leftrightarrow {G_{\rm{1}}}\left( z \right),且 G1(z)=z2K+1G0(z1){G_1}\left( z \right) = - {z^{ - {\rm{2}}K{\rm{ + }}1}}{G_0}\left( { - {z^{ - {\rm{1}}}}} \right)
结论得证

题3

假设课本中给出完美重建滤波器的正交族对应的三个滤波器间的关系式是正确的,并以此为基础,推导h0,h1{h_0},{h_1}的关系。

答:
已知(1)、(2)、(3)式如下:
g1(n)=(1)ng0(2K1n){g_1}\left( n \right) = {\left( { - 1} \right)^n}{g_0}\left( {2K - 1 - n} \right) h0(n)=g0(2K1n){h_0}\left( n \right) = {g_0}\left( {2K - 1 - n} \right) h1(n)=g1(2K1n){h_1}\left( n \right) = {g_1}\left( {2K - 1 - n} \right)

将式(1)带入式(3)得:
h1(n)=(1)2K1ng0(n){h_1}\left( n \right) = {\left( { - 1} \right)^{2K - 1 - n}}{g_{\rm{0}}}\left( n \right)

将式(2)带入上式得:
h1(n)=(1)2K1nh0(2K1n){h_1}\left( n \right) = {\left( { - 1} \right)^{2K - 1 - n}}{h_{\rm{0}}}\left( {2K - 1 - n} \right)

题4

哈尔变换可以用矩阵的形式表示为:
T=HFHTT=HFH^T

其中, F是一个N×NN\times N的图像矩阵,HN×NN\times N变换矩阵,TN×NN\times N变换结果。对于哈尔变换,变换矩阵H包含基函数hk(z)h_k(z),它们定义在连续闭区z[0,1],k=0,1,2,...,N1z\in\left[0,1\right],k=0,1,2,...,N-1,其中N=2nN=2^n。为了生成矩阵,定义整数k,即k=2p+q1k=2^p+q-1(这里0pn1{\rm{0}} \le p \le n - 1,当p=0p=0q=0q=0或1;当p0p\neq0时,1q2p1\le q \le2^p)。可得哈尔基函数为:
h0(z)=h00(z)=1N,z[0,1]h_0\left(z\right)=h_{00}\left(z\right)=\frac{1}{\sqrt N},z\in[0,1]

小波变换-习题
N×NN×N哈尔变换矩阵的第 行包含了元素hi(z)h_i(z),其中z=0N,1N,(N1)/Nz=\frac{0}{N},\frac{1}{N},\cdots(N-1)/N。计算当N=16时的H16H_{16}矩阵。

答:
首先计算k、p、q之间的关系,得到下表
小波变换-习题
再计算hk(z)h_k\left(z\right)
小波变换-习题

题5

小波变换-习题
答:
φ(x)\varphi \left( x \right)组成的展开函数集合可知:
φj,k(x)=2j/2φ(2jxk){\varphi _{j,k}}\left( x \right) = {2^{j/2}}\varphi \left( {{2^j}x - k} \right)

因此可以得到
φ0,0(x)=φ(x){\varphi _{0,0}}\left( x \right) = \varphi \left( x \right) φ1,0(x)=2φ(2x){\varphi _{1,0}}\left( x \right) = \sqrt 2 \varphi \left( {2x} \right) φ1,1(x)=2φ(2x1){\varphi _{1,1}}\left( x \right) = \sqrt 2 \varphi \left( {2x - 1} \right)

MRA要求2指出,低尺度的尺度函数张成的子空间,嵌套在高尺度函数张成的子空间内
可以看出φ0,0(x){\varphi _{0,0}}\left( x \right)无法通过φ1,0(x){\varphi _{1,0}}\left( x \right)φ1,1(x){\varphi _{1,1}}\left( x \right)通过加权求和的方式得到,因此该尺度函数不满足多分辨率分析的第二个要求。
小波变换-习题

题6

课本322页习题7.16
小波变换-习题
小波变换-习题
答:
(a
Wφ(j0,k)=1Mnf(n)φj,k(n){W_\varphi }\left( {{j_0},k} \right) = \frac{1}{{\sqrt M }}\sum\nolimits_n {f\left( n \right){\varphi _{j,k}}\left( n \right)}计算小波函数系数

Wφ(1,0)=12(f(0)φ1,0(0)+f(1)φ1,0(1)+f(2)φ1,0(2)+f(3)φ1,0(3))                        =12(1×2+4×23×0+0×0)=522\begin{array}{l} {W_\varphi }\left( {1,0} \right) = \frac{1}{2}\left( {f\left( {\rm{0}} \right){\varphi _{{\rm{1}},{\rm{0}}}}\left( {\rm{0}} \right){\rm{ + }}f\left( {\rm{1}} \right){\varphi _{{\rm{1}},{\rm{0}}}}\left( {\rm{1}} \right){\rm{ + }}f\left( {\rm{2}} \right){\varphi _{{\rm{1}},{\rm{0}}}}\left( {\rm{2}} \right){\rm{ + }}f\left( {\rm{3}} \right){\varphi _{{\rm{1}},{\rm{0}}}}\left( {\rm{3}} \right)} \right)\\ \;\;\;\;\;\;\;\;\;\;\;\; = \frac{1}{2}\left( {1 \times \sqrt 2 {\rm{ + 4}} \times \sqrt 2 - 3 \times 0{\rm{ + 0}} \times 0} \right) = \frac{{5\sqrt 2 }}{2} \end{array} Wφ(1,1)=12(f(0)φ1,1(0)+f(1)φ1,1(1)+f(2)φ1,1(2)+f(3)φ1,1(3))                        =12(1×0+4×03×2+0×2)=322\begin{array}{l} {W_\varphi }\left( {1,1} \right) = \frac{1}{2}\left( {f\left( {\rm{0}} \right){\varphi _{{\rm{1}},1}}\left( {\rm{0}} \right){\rm{ + }}f\left( {\rm{1}} \right){\varphi _{{\rm{1}},1}}\left( {\rm{1}} \right){\rm{ + }}f\left( {\rm{2}} \right){\varphi _{{\rm{1}},1}}\left( {\rm{2}} \right){\rm{ + }}f\left( {\rm{3}} \right){\varphi _{{\rm{1}},1}}\left( {\rm{3}} \right)} \right)\\ \;\;\;\;\;\;\;\;\;\;\;\; = \frac{1}{2}\left( {1 \times 0{\rm{ + 4}} \times 0 - 3 \times \sqrt 2 {\rm{ + 0}} \times \sqrt 2 } \right) = - \frac{{3\sqrt 2 }}{2} \end{array}

Wψ(j0,k)=1Mnf(n)ψj,k(n){W_\psi }\left( {{j_0},k} \right) = \frac{1}{{\sqrt M }}\sum\nolimits_n {f\left( n \right){\psi _{j,k}}\left( n \right)}计算尺度函数系数
Wψ(1,0)=12(f(0)ψ1,0(0)+f(1)ψ1,0(1)+f(2)ψ1,0(2)+f(3)ψ1,0(3))                        =12(1×2+4×(2)3×0+0×0)=322\begin{array}{l} {W_\psi }\left( {1,0} \right) = \frac{1}{2}\left( {f\left( {\rm{0}} \right){\psi _{{\rm{1}},{\rm{0}}}}\left( {\rm{0}} \right){\rm{ + }}f\left( {\rm{1}} \right){\psi _{{\rm{1}},{\rm{0}}}}\left( {\rm{1}} \right){\rm{ + }}f\left( {\rm{2}} \right){\psi _{{\rm{1}},{\rm{0}}}}\left( {\rm{2}} \right){\rm{ + }}f\left( {\rm{3}} \right){\psi _{{\rm{1}},{\rm{0}}}}\left( {\rm{3}} \right)} \right)\\ \;\;\;\;\;\;\;\;\;\;\;\; = \frac{1}{2}\left( {1 \times \sqrt 2 {\rm{ + 4}} \times \left( { - \sqrt 2 } \right) - 3 \times 0{\rm{ + 0}} \times 0} \right) = - \frac{{3\sqrt 2 }}{2} \end{array} Wψ(1,1)=12(f(0)ψ1,1(0)+f(1)ψ1,1(1)+f(2)ψ1,1(2)+f(3)ψ1,1(3))                        =12(1×0+4×03×2+0×(2))=322\begin{array}{l} {W_\psi }\left( {1,1} \right) = \frac{1}{2}\left( {f\left( {\rm{0}} \right){\psi _{{\rm{1}},1}}\left( {\rm{0}} \right){\rm{ + }}f\left( {\rm{1}} \right){\psi _{{\rm{1}},1}}\left( {\rm{1}} \right){\rm{ + }}f\left( {\rm{2}} \right){\psi _{{\rm{1}},1}}\left( {\rm{2}} \right){\rm{ + }}f\left( {\rm{3}} \right){\psi _{{\rm{1}},1}}\left( {\rm{3}} \right)} \right)\\ \;\;\;\;\;\;\;\;\;\;\;\; = \frac{1}{2}\left( {1 \times 0{\rm{ + 4}} \times 0 - 3 \times \sqrt 2 {\rm{ + 0}} \times \left( { - \sqrt 2 } \right)} \right) = - \frac{{3\sqrt 2 }}{2} \end{array}

所以DWT是: {522,322,322,322}\left\{ {\frac{5}{2}\sqrt 2 , - \frac{3}{2}\sqrt 2 , - \frac{3}{2}\sqrt 2 , - \frac{3}{2}\sqrt 2 } \right\}

(b
由反向DWT公式f(n)=1MkWφ(j0,k)φj0,k(n)+1Mj=j0nWψ(j,k)φj,k(n)f\left( n \right) = \frac{1}{{\sqrt M }}\sum\nolimits_k {{W_\varphi }\left( {{j_0},k} \right){\varphi _{{j_0},k}}\left( n \right)} + \frac{1}{{\sqrt M }}\sum\limits_{j = {j_0}}^\infty {\sum\nolimits_n {{W_\psi }\left( {j,k} \right){\varphi _{j,k}}\left( n \right)} }
f(1)=12(Wφ(1,0)φ1,0(1)+Wφ(1,1)φ1,1(1)+Wψ(1,0)ψ1,0(1)+Wψ(1,1)ψ1,1(1))=1f\left( 1 \right) = \frac{1}{2}\left( {{W_\varphi }\left( {1,0} \right){\varphi _{1,0}}\left( 1 \right) + {W_\varphi }\left( {1,1} \right){\varphi _{1,1}}\left( 1 \right) + {W_\psi }\left( {1,0} \right){\psi _{1,0}}\left( 1 \right) + {W_\psi }\left( {1,1} \right){\psi _{1,1}}\left( 1 \right)} \right) = 1

题7

现在假设我们有一个长度为8的信号f=[1 3 5 7 4 3 2 1], 利用哈尔小波进行两层的快速小波变换分解,计算各层的滤波器输出,然后再进行完美重建,请利用与书中例子相同的框图进行计算。

答:
快速小波分级如下图:
小波变换-习题

完美重建如下图:
小波变换-习题