随即森林/Extra-Tress/回归问题
随机森林
key: 随机森林
value:基模型 为Decision Tree 的Bagging 进一步增强随机性
value: Decision Tree
value:最优维度、最优阈值
更快的训练速度(不用最优化分)
from sklearn.ensemble import RandomForestClassifier
rf_clf = RandomForestClassifier(n_estimators=500, random_state=666,oob_score=True)
rf_clf.fit(X,y)
rf_clf.oob_score_
rf_clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes = 16, random_state=666,oob_score=True)
rf_clf.fit(X,y)
#随机划分
from sklearn.ensemble import ExtraTreesClassifier
rf_clf = ExtraTreesClassifier(n_estimators=500, random_state=666,oob_score=True,bootstrap=True)
rf_clf.fit(X,y)
rf_clf.oob_score_
#回归问题
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor