找出第k大的数[No. 64]

问题:

从一个数组里面,找出第K大的数。

题目很简单,要想把第K个数找出来,其实也挺容易的。

第一种方法:无非就是先排序,比如用Merge Sort算法,整个算法复杂度为 O(NlgN), 然后找到第K个即可。

第二种方法:如果k很小,比如第五个最大的数,而整个数组的长度非常的大,那么,还有一种方法就是,我做k遍找最大的数,每做一遍,就把最大的放在数组的最后面,然后减少数组扫描的范围,就可以把第k大的数找出来,这样做的复杂度就是O(K*N),在K很小的情况下,还是不错的。

第三种方法:我们可以借助quicksort的思想,把数组的值分成两部分,一部分比那个pivot大,一部分比pivot小,因为我们知道pivot在数组中的位置,所以比较k和pivot的位置就知道第k大的值在哪个范围,我们不断的进行recursion, 直到pivot就是第K大的值。时间复杂度,出乎意料,为O(N),但是这是平均复杂度。 为何它的平均复杂度比quicksort的复杂度低呢?重要原因是quicksort要对pivot两边的子数组还要排序,而我们其实只需要对其中一个进行处理,所以复杂度更低。具体怎么推导,请参考算法导论。

但是本文讲的是另一个算法,叫做SELECT 算法,它能在时间复杂度为O(N)的情况下找出第K大的数。先把算法贴出来,然后再讲。

找出第k大的数[No. 64]

第一步:把数组分成\lfloor n/5 \rfool 这么多子数组,每个子数组里包含5个数,因为会有无法整出的可能,所以最后一个子数组会小于5.

第二步:用insertion sorting 把这5个数排序,然后找出中位数,也就是第3个。

第三步:把获得的中位数又排序,找出中位数的中位数。如果中位数的个数是偶数,那么取排好序的第 m/2 个数,m指的是中位数的个数。

第四步:然后呢,把原来的数组分成两个部分,一部分比那个“中位数的中位数”大,一部分比那个“中位数的中位数”小。我们可以假设左边的数大,右边的数小。然后我们可以得到“中位数的中位数”的位置i.

第五步:如果i = k, 那么那个“中位数的中位数”就是第k大的数。如果 i < k, 不用说,第k大的在“中位数的中位数”的右边,否则就在左边。我们一直recursely 这么做,那么就一定能够找到第K大的值了。

其实,算法还是比较容易懂得,关键的关键,是复杂度的分析。如果能够知道复杂度如何求出来的,那么,对算法本身就了解得更清楚。


要讲复杂度,首先看一个图。

找出第k大的数[No. 64]

图中的X 就是“中位数的中位数”, 而且箭头的方向是从大数指到小数。所以,我们可以知道,至少灰色区域的都比X大,这是整个复杂度分析的关键,而,其它点能否说它比X大,我们不能保证。而灰色区域里最多有多少个数呢?因为X是中位数的中位数,所以,比X大的中位数最少有 [(\lfloor n/5 \rfool) * (1/2) - 2] 个(这个值也是关键), 这里减2是因为要去除X本身,第二呢,还要去除一个中位数---这个中位数所在的子数组个数小于5. 所以,最坏最坏的情况,第K大的值不在灰色区域里,那么我们就要对剩下部分进行不断的SELECT。剩余部分就是n - 3[(\lfloor n/5 \rfool) * (1/2) - 2] = O(7n/10) .

整个过程中,第1,2,4步所需时间为O(n), 注意第2步的复杂度不为O(n^2),第3步的复杂度为 T(n/5),第五步的复杂度为 T(7n/10)。

所以,复杂度的递归公式为: T(n) =T(n/5) +T(7n/10) + O(n), 算出来以后T(n) =O(n).