LRU Cache
原创转载请注明出处:http://agilestyle.iteye.com/blog/2356978
LRU Cache
LRU —— Least Recently Used,即 最近最少使用;也就是说LRU Cache把最近最少使用的数据移除,让给最新读取的数据,而往往最常读取的,也是读取次数最多的,所以,利用LRU Cache,能够提高系统的性能。
要实现 LRU 缓存,我们首先要用到一个类 LinkedHashMap。
用这个类有两大好处:
- 它本身已经实现了按照访问顺序的存储,也就是说,最近读取的会放在最前面,最不常读取的会放在最后(当然,它也可以实现按照插入顺序存储)。
- LinkedHashMap 本身有一个方法用于判断是否需要移除最不常读取的数,但是,原始方法默认不需要移除(这时LinkedHashMap 相当于一个Linkedlist),所以需要 override 这样一个方法,使得当缓存里存放的数据个数超过规定个数后,就把最不常用的移除掉。
import java.util.ArrayList;
import java.util.Collection;
import java.util.LinkedHashMap;
import java.util.Map;
/**
* An LRU cache, based on <code>LinkedHashMap</code>.
*
* <p>
* This cache has a fixed maximum number of elements (<code>cacheSize</code>).
* If the cache is full and another entry is added, the LRU (least recently
* used) entry is dropped.
*
* <p>
* This class is thread-safe. All methods of this class are synchronized.
*
* <p>
* Author: Christian d'Heureuse, Inventec Informatik AG, Zurich, Switzerland<br>
* Multi-licensed: EPL / LGPL / GPL / AL / BSD.
*/
public class LRUCache<K, V> {
private static final float hashTableLoadFactor = 0.75f;
private LinkedHashMap<K, V> map;
private int cacheSize;
/**
* Creates a new LRU cache.
*
* @param cacheSize the maximum number of entries that will be kept in this cache.
*/
public LRUCache(int cacheSize) {
this.cacheSize = cacheSize;
int hashTableCapacity = (int) Math.ceil(cacheSize / hashTableLoadFactor) + 1;
map = new LinkedHashMap<K, V>(hashTableCapacity, hashTableLoadFactor, true) {
// (an anonymous inner class)
private static final long serialVersionUID = 1;
@Override
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
return size() > LRUCache.this.cacheSize;
}
};
}
/**
* Retrieves an entry from the cache.<br>
* The retrieved entry becomes the MRU (most recently used) entry.
*
* @param key the key whose associated value is to be returned.
* @return the value associated to this key, or null if no value with this
* key exists in the cache.
*/
public synchronized V get(K key) {
return map.get(key);
}
/**
* Adds an entry to this cache. The new entry becomes the MRU (most recently
* used) entry. If an entry with the specified key already exists in the
* cache, it is replaced by the new entry. If the cache is full, the LRU
* (least recently used) entry is removed from the cache.
*
* @param key the key with which the specified value is to be associated.
* @param value a value to be associated with the specified key.
*/
public synchronized void put(K key, V value) {
map.put(key, value);
}
/**
* Clears the cache.
*/
public synchronized void clear() {
map.clear();
}
/**
* Returns the number of used entries in the cache.
*
* @return the number of entries currently in the cache.
*/
public synchronized int usedEntries() {
return map.size();
}
/**
* Returns a <code>Collection</code> that contains a copy of all cache
* entries.
*
* @return a <code>Collection</code> with a copy of the cache content.
*/
public synchronized Collection<Map.Entry<K, V>> getAll() {
return new ArrayList<>(map.entrySet());
}
// Test routine for the LRUCache class.
public static void main(String[] args) {
LRUCache<String, String> cache = new LRUCache<>(3);
cache.put("1", "one"); // 1
cache.put("2", "two"); // 2 1
cache.put("3", "three"); // 3 2 1
cache.put("4", "four"); // 4 3 2
if (cache.get("2") == null)
throw new Error(); // 2 4 3
cache.put("5", "five"); // 5 2 4
cache.put("4", "second four"); // 4 5 2
// Verify cache content.
if (cache.usedEntries() != 3)
throw new Error();
if (!cache.get("4").equals("second four"))
throw new Error();
if (!cache.get("5").equals("five"))
throw new Error();
if (!cache.get("2").equals("two"))
throw new Error();
// List cache content.
for (Map.Entry<String, String> entry : cache.getAll()) {
System.out.println(entry.getKey() + " : " + entry.getValue());
}
cache.clear();
}
}
Reference
https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_Recently_Used_.28LRU.29
http://wiki.jikexueyuan.com/project/java-collection/linkedhashmap-lrucache.html