Spark中Transformation算子和Action算子详细介绍
美图欣赏:
一.Transformation算子
RDD中的所有转换都是延迟加载的,也就是说,它们并不会直接计算结果。相反的,它们只是记住这些应用到基础数据集(例如一个文件)上的转换动作。只有当发生一个要求返回结果给Driver的动作时,这些转换才会真正运行。这种设计让Spark更加有效率地运行。
转换 |
含义 |
map(func) |
返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成 |
filter(func)过滤 |
返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成 |
flatMap(func)展平|压平 |
类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素) |
mapPartitions(func)跟map类似,对RDD中每个分区进行计算 |
类似于map,但独立地在RDD的每一个分片上运行,因此在类型为T的RDD上运行时,func的函数类型必须是Iterator[T] => Iterator[U] |
mapPartitionsWithIndex(func)对RDD中每个分区进行操作,可以获取分区号 |
类似于mapPartitions,但func带有一个整数参数表示分片的索引值,因此在类型为T的RDD上运行时,func的函数类型必须是(Int, Interator[T]) => Iterator[U] |
sample(withReplacement, fraction, seed)采样 |
根据fraction指定的比例对数据进行采样,可以选择是否使用随机数进行替换,seed用于指定随机数生成器种子 |
union(otherDataset)并集 |
对源RDD和参数RDD求并集后返回一个新的RDD |
intersection(otherDataset)交集 |
对源RDD和参数RDD求交集后返回一个新的RDD |
distinct([numTasks]))去重 |
对源RDD进行去重后返回一个新的RDD |
groupByKey([numTasks]) 底层,按照key进行分组 |
在一个(K,V)的RDD上调用,返回一个(K, Iterator[V])的RDD |
reduceByKey(func, [numTasks])聚合 |
在一个(K,V)的RDD上调用,返回一个(K,V)的RDD,使用指定的reduce函数,将相同key的值聚合到一起,与groupByKey类似,reduce任务的个数可以通过第二个可选的参数来设置 |
aggregateByKey(zeroValue)(seqOp,combOp,[numTasks])聚合 |
|
sortByKey([ascending], [numTasks])排序 |
在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD |
sortBy(func,[ascending], [numTasks])排序 |
与sortByKey类似,但是更灵活 |
join(otherDataset, [numTasks])关联 |
在类型为(K,V)和(K,W)的RDD上调用,返回一个相同key对应的所有元素对在一起的(K,(V,W))的RDD |
cogroup(otherDataset, [numTasks]) |
在类型为(K,V)和(K,W)的RDD上调用,返回一个(K,(Iterable<V>,Iterable<W>))类型的RDD |
cartesian(otherDataset) |
笛卡尔积 |
pipe(command, [envVars]) |
|
coalesce(numPartitions) |
|
repartition(numPartitions)重分区 |
|
repartitionAndSortWithinPartitions(partitioner) |
|
二、Action算子
动作 |
含义 |
reduce(func) |
通过func函数聚集RDD中的所有元素,这个功能必须是课交换且可并联的 |
collect() |
在驱动程序中,以数组的形式返回数据集的所有元素 |
count() |
返回RDD的元素个数 |
first() |
返回RDD的第一个元素(类似于take(1)) |
take(n) |
返回一个由数据集的前n个元素组成的数组 |
takeSample(withReplacement,num, [seed]) |
返回一个数组,该数组由从数据集中随机采样的num个元素组成,可以选择是否用随机数替换不足的部分,seed用于指定随机数生成器种子 |
takeOrdered(n, [ordering]) |
|
saveAsTextFile(path) |
将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本 |
saveAsSequenceFile(path) |
将数据集中的元素以Hadoop sequencefile的格式保存到指定的目录下,可以使HDFS或者其他Hadoop支持的文件系统。 |
saveAsObjectFile(path) |
|
countByKey() |
针对(K,V)类型的RDD,返回一个(K,Int)的map,表示每一个key对应的元素个数。 |
foreach(func) |
在数据集的每一个元素上,运行函数func进行更新。 |
————保持学习,保持饥饿
Jackson_MVP