3.1 计算机视觉的发展和卷积神经网络概要(百度架构师手把手带你零基础实践深度学习原版笔记系列)

3.1 计算机视觉的发展和卷积神经网络(百度架构师手把手带你零基础实践深度学习原版笔记系列)

 

概要

计算机视觉作为一门让机器学会如何去“看”的科学学科,具体的说,就是让机器去识别摄像机拍摄的图片或视频中的物体,检测出物体所在的位置,并对目标物体进行跟踪,从而理解并描述出图片或视频里的场景和故事,以此来模拟人脑视觉系统。因此,计算机视觉也通常被叫做机器视觉,其目的是建立能够从图像或者视频中“感知”信息的人工系统。

计算机视觉技术经过几十年的发展,已经在交通(车牌识别、道路违章抓拍)、安防(人脸闸机、小区监控)、金融(刷脸支付、柜台的自动票据识别)、医疗(医疗影像诊断)、工业生产(产品缺陷自动检测)等多个领域应用,影响或正在改变人们的日常生活和工业生产方式。未来,随着技术的不断演进,必将涌现出更多的产品应用,为我们的生活创造更大的便利和更广阔的机会。
 

3.1 计算机视觉的发展和卷积神经网络概要(百度架构师手把手带你零基础实践深度学习原版笔记系列)


图1:计算机视觉技术在各领域的应用


 

飞桨为计算机视觉任务提供了丰富的API,并通过底层优化和加速保证了这些API的性能。同时,飞桨还提供了丰富的模型库,覆盖图像分类、检测、分割、文字识别和视频理解等多个领域。用户可以直接使用这些API组建模型,也可以在飞桨提供的模型库基础上进行二次研发。

由于篇幅所限,本章将重点介绍计算机视觉的经典模型(卷积神经网络)和两个典型任务(图像分类和目标检测)。主要涵盖如下内容:

  • 卷积神经网络:卷积神经网络(Convolutional Neural Networks, CNN)是计算机视觉技术最经典的模型结构。本教程主要介绍卷积神经网络的常用模块,包括:卷积、池化、**函数、批归一化、Dropout等。

  • 图像分类:介绍图像分类算法的经典模型结构,包括:LeNet、AlexNet、VGG、GoogLeNet、ResNet,并通过眼疾筛查的案例展示算法的应用。

  • 目标检测:介绍目标检测YOLO-V3算法,并通过林业病虫害检测案例展示YOLO-V3算法的应用。

 

 

计算机视觉的发展历程

计算机视觉的发展历程要从生物视觉讲起。对于生物视觉的起源,目前学术界尚没有形成定论。有研究者认为最早的生物视觉形成于距今约7亿年前的水母之中,也有研究者认为生物视觉产生于距今约5亿年前寒武纪【12】。寒武纪生物大爆发的原因一直是个未解之谜,不过可以肯定的是在寒武纪动物具有了视觉能力,捕食者可以更容易地发现猎物,被捕食者也可以更早的发现天敌的位置。视觉能力加剧了猎手和猎物之间的博弈,也催生出更加激烈的生存演化规则。视觉系统的形成有力地推动了食物链的演化,加速了生物进化过程,是生物发展史上重要的里程碑。经过几亿年的演化,目前人类的视觉系统已经具备非常高的复杂度和强大的功能,人脑中神经元数目达到了1000亿个,这些神经元通过网络互相连接,这样庞大的视觉神经网络使得我们可以很轻松的观察周围的世界,如 图2 所示。
 

3.1 计算机视觉的发展和卷积神经网络概要(百度架构师手把手带你零基础实践深度学习原版笔记系列)


图2:人类视觉感知


 

对人类来说,识别猫和狗是件非常容易的事。但对计算机来说,即使是一个精通编程的高手,也很难轻松写出具有通用性的程序(比如:假设程序认为体型大的是狗,体型小的是猫,但由于拍摄角度不同,可能一张图片上猫占据的像素比狗还多)。那么,如何让计算机也能像人一样看懂周围的世界呢?研究者尝试着从不同的角度去解决这个问题,由此也发展出一系列的子任务,如 图3 所示。
 

3.1 计算机视觉的发展和卷积神经网络概要(百度架构师手把手带你零基础实践深度学习原版笔记系列)


图3:计算机视觉子任务示意图


 

  • (a) Image Classification: 图像分类,用于识别图像中物体的类别(如:bottle、cup、cube)。

  • (b) Object Localization: 目标检测,用于检测图像中每个物体的类别,并准确标出它们的位置。

  • (c) Semantic Segmentation: 图像语义分割,用于标出图像中每个像素点所属的类别,属于同一类别的像素点用一个颜色标识。

  • (d) Instance Segmentation: 实例分割,值得注意的是,(b)中的目标检测任务只需要标注出物体位置,而(d)中的实例分割任务不仅要标注出物体位置,还需要标注出物体的外形轮廓。

在早期的图像分类任务中,通常是先人工提取图像特征,再用机器学习算法对这些特征进行分类,分类的结果强依赖于特征提取方法,往往只有经验丰富的研究者才能完成,如 图4 所示。
 

3.1 计算机视觉的发展和卷积神经网络概要(百度架构师手把手带你零基础实践深度学习原版笔记系列)


图4:早期的图像分类任务


 

在这种背景下,基于神经网络的特征提取方法应运而生。Yann LeCun是最早将卷积神经网络应用到图像识别领域的,其主要逻辑是使用卷积神经网络提取图像特征,并对图像所属类别进行预测,通过训练数据不断调整网络参数,最终形成一套能自动提取图像特征并对这些特征进行分类的网络,如 图5 所示。
 

3.1 计算机视觉的发展和卷积神经网络概要(百度架构师手把手带你零基础实践深度学习原版笔记系列)


图5:早期的卷积神经网络处理图像任务示意


 

这一方法在手写数字识别任务上取得了极大的成功,但在接下来的时间里,却没有得到很好的发展。其主要原因一方面是数据集不完善,只能处理简单任务,在大尺寸的数据上容易发生过拟合;另一方面是硬件瓶颈,网络模型复杂时,计算速度会特别慢。

目前,随着互联网技术的不断进步,数据量呈现大规模的增长,越来越丰富的数据集不断涌现。另外,得益于硬件能力的提升,计算机的算力也越来越强大。不断有研究者将新的模型和算法应用到计算机视觉领域。由此催生了越来越丰富的模型结构和更加准确的精度,同时计算机视觉所处理的问题也越来越丰富,包括分类、检测、分割、场景描述、图像生成和风格变换等,甚至还不仅仅局限于2维图片,包括视频处理技术和3D视觉等。

 

 

卷积神经网络概要

卷积神经网络是目前计算机视觉中使用最普遍的模型结构。本章节主要为读者介绍卷积神经网络的一些基础模块,包括:

  • 卷积(Convolution)
  • 池化(Pooling)
  • ReLU**函数
  • 批归一化(Batch Normalization)
  • 丢弃法(Dropout)

回顾一下,在上一章“一个案例带你吃透深度学习”中,我们介绍了手写数字识别任务,应用的是全连接层的特征提取,即将一张图片上的所有像素点展开成一个1维向量输入网络,存在如下两个问题:

1. 输入数据的空间信息被丢失。 空间上相邻的像素点往往具有相似的RGB值,RGB的各个通道之间的数据通常密切相关,但是转化成1维向量时,这些信息被丢失。同时,图像数据的形状信息中,可能隐藏着某种本质的模式,但是转变成1维向量输入全连接神经网络时,这些模式也会被忽略。

2. 模型参数过多,容易发生过拟合。 在手写数字识别案例中,每个像素点都要跟所有输出的神经元相连接。当图片尺寸变大时,输入神经元的个数会按图片尺寸的平方增大,导致模型参数过多,容易发生过拟合。

为了解决上述问题,我们引入卷积神经网络进行特征提取,既能提取到相邻像素点之间的特征模式,又能保证参数的个数不随图片尺寸变化。图6 是一个典型的卷积神经网络结构,多层卷积和池化层组合作用在输入图片上,在网络的最后通常会加入一系列全连接层,ReLU**函数一般加在卷积或者全连接层的输出上,网络中通常还会加入Dropout来防止过拟合。


 

3.1 计算机视觉的发展和卷积神经网络概要(百度架构师手把手带你零基础实践深度学习原版笔记系列)


图6:卷积神经网络经典结构


 


说明:

在卷积神经网络中,计算范围是在像素点的空间邻域内进行的,卷积核参数的数目也远小于全连接层。卷积核本身与输入图片大小无关,它代表了对空间邻域内某种特征模式的提取。比如,有些卷积核提取物体边缘特征,有些卷积核提取物体拐角处的特征,图像上不同区域共享同一个卷积核。当输入图片大小不一样时,仍然可以使用同一个卷积核进行操作。