迁移学习“Partial Transfer Learning with Selective Adversarial Networks”

Partial Transfer Learning with Selective Adversarial

Networks

摘要:对抗学习应用于深度网络中学习可迁移的特征初有成效,它降低了源域及目标域之间的分布差异。目前已有的对抗网络假设源域和目标域共享全部的标记空间。在迁移过程中,源域中类别往往很多,而目标域通常只和源域其中一小部分相关,直接迁移肯定会产生负迁移的影响。论文提出了部分迁移学习,减轻了标记空间的约束,目标域标记空间可以仅是源域的子集。论文提出的网络称为选择性对抗网络(SAN),通过挑选出源域中outlier类减轻负迁移影响,并在共享的标记空间中最大化匹配数据分布提升正迁移的影响。

 

从大数据的角度来看,可以假设源域中大规模训练集包含了目标域的所有类别,目标域的label仅是源域的子集,如图1所示,源域中的outlier(‘sofa’)将产生负迁移。

 

迁移学习“Partial Transfer Learning with Selective Adversarial Networks”

 

方法描述

部分迁移学习目标域标记空间迁移学习“Partial Transfer Learning with Selective Adversarial Networks”是源域标记空间迁移学习“Partial Transfer Learning with Selective Adversarial Networks”的子集,迁移学习“Partial Transfer Learning with Selective Adversarial Networks”,实际应用中也是经常由大数据集(如ImageNet)向小数据集(CIFAR10)迁移。假设源域迁移学习“Partial Transfer Learning with Selective Adversarial Networks”包含迁移学习“Partial Transfer Learning with Selective Adversarial Networks”类共迁移学习“Partial Transfer Learning with Selective Adversarial Networks”个样本,目标域迁移学习“Partial Transfer Learning with Selective Adversarial Networks”包含迁移学习“Partial Transfer Learning with Selective Adversarial Networks”类共迁移学习“Partial Transfer Learning with Selective Adversarial Networks”个未标记的样本。源域和目标域的采样概率分别为p和q,迁移学习中迁移学习“Partial Transfer Learning with Selective Adversarial Networks”,部分迁移学习迁移学习“Partial Transfer Learning with Selective Adversarial Networks”。本文的目标是设计网络学习迁移特征迁移学习“Partial Transfer Learning with Selective Adversarial Networks”及自适应分类器迁移学习“Partial Transfer Learning with Selective Adversarial Networks”建立跨域差异的桥梁,通过源域的监督学习最小化目标风险:

迁移学习“Partial Transfer Learning with Selective Adversarial Networks”

 

迁移学习中,主要的挑战是目标域没有标记数据,由于分布差异迁移学习“Partial Transfer Learning with Selective Adversarial Networks”,源域中学习到的分类器不能直接用于目标域。在部分迁移学习中,源域中哪部分的label与目标域共享也不知道。一方面,源域中属于outlier的标记数据将导致负迁移;另一方面,降低t迁移学习“Partial Transfer Learning with Selective Adversarial Networks”与q间的分布差异在知识迁移中比较关键。

 

  1. 域对抗网络

对抗学习是双人游戏,其中一个是域分辨器迁移学习“Partial Transfer Learning with Selective Adversarial Networks”,用于分辨源域和目标域,另外一个是特征提取器迁移学习“Partial Transfer Learning with Selective Adversarial Networks”,目的是迷惑域分辨器。

为提取域不变的特征f,特征提取器迁移学习“Partial Transfer Learning with Selective Adversarial Networks”的参数θf迁移学习“Partial Transfer Learning with Selective Adversarial Networks”通过最大化域分辨器Gd迁移学习“Partial Transfer Learning with Selective Adversarial Networks”的损失学习,域分辨器的参数迁移学习“Partial Transfer Learning with Selective Adversarial Networks”通过最小化域分辨器的损失学习,同时最小化label预测器迁移学习“Partial Transfer Learning with Selective Adversarial Networks”的损失。域对抗网络的目标函数为:

迁移学习“Partial Transfer Learning with Selective Adversarial Networks” (1)

收敛时,网络参数满足:

迁移学习“Partial Transfer Learning with Selective Adversarial Networks”

迁移学习“Partial Transfer Learning with Selective Adversarial Networks” (2)

对于标准迁移学习,源域与目标域标记空间相同的情况,域对抗网络性能较好。

  1. 选择性对抗网络

目标域标记空间是源域的子集,outlier label空间越大,负迁移情况越严重,论文将outlier的源域类别选出去解决负迁移问题。

为匹配具有不同标记空间的域,将域分辨器迁移学习“Partial Transfer Learning with Selective Adversarial Networks”分离成迁移学习“Partial Transfer Learning with Selective Adversarial Networks”个类别级域分辨器迁移学习“Partial Transfer Learning with Selective Adversarial Networks”,k=1,…,Cs迁移学习“Partial Transfer Learning with Selective Adversarial Networks”,每个负责label为k的源域和目标域数据匹配,如图2所示。由于目标域标记在训练中不可访问,决定哪个域分辨器迁移学习“Partial Transfer Learning with Selective Adversarial Networks”对每个目标域数据负责并不容易。而label预测器迁移学习“Partial Transfer Learning with Selective Adversarial Networks”的输出是源域标记空间的概率分布,该分布描述了迁移学习“Partial Transfer Learning with Selective Adversarial Networks”该分为迁移学习“Partial Transfer Learning with Selective Adversarial Networks”中的哪一类。可以使用迁移学习“Partial Transfer Learning with Selective Adversarial Networks”作为将迁移学习“Partial Transfer Learning with Selective Adversarial Networks”分配给某个域分辨器迁移学习“Partial Transfer Learning with Selective Adversarial Networks”,迁移学习“Partial Transfer Learning with Selective Adversarial Networks”的概率。这样生成概率加权的域分辨损失:

迁移学习“Partial Transfer Learning with Selective Adversarial Networks”(3)

其中迁移学习“Partial Transfer Learning with Selective Adversarial Networks”是第k个域分辨器,迁移学习“Partial Transfer Learning with Selective Adversarial Networks”是交叉熵损失,迁移学习“Partial Transfer Learning with Selective Adversarial Networks”xi迁移学习“Partial Transfer Learning with Selective Adversarial Networks”的域标记。多分辨器域对抗网络可以进行细粒度的自适应,每个数据迁移学习“Partial Transfer Learning with Selective Adversarial Networks”仅与相关的域分辨器匹配。

同时降低源域中outlier类的域分辨器,对域分辨器进行类别级的加权:

迁移学习“Partial Transfer Learning with Selective Adversarial Networks”(4)

其中,迁移学习“Partial Transfer Learning with Selective Adversarial Networks”是k类的类别级权值,对于outlier类别来说很小。

迁移学习“Partial Transfer Learning with Selective Adversarial Networks”

多域分辨器对概率迁移学习“Partial Transfer Learning with Selective Adversarial Networks”依赖程序比较高,使用熵最小化准则调整类别预测器迁移学习“Partial Transfer Learning with Selective Adversarial Networks”,使得类间低密度分离,通过最小化概率yik迁移学习“Partial Transfer Learning with Selective Adversarial Networks”在目标域上的条件熵实现:

迁移学习“Partial Transfer Learning with Selective Adversarial Networks” (5)

其中迁移学习“Partial Transfer Learning with Selective Adversarial Networks”是条件熵损失函数迁移学习“Partial Transfer Learning with Selective Adversarial Networks”。通过最小化熵(5),label预测器迁移学习“Partial Transfer Learning with Selective Adversarial Networks”可以直接访问目标域未标记的数据。

最终的目标函数为:

迁移学习“Partial Transfer Learning with Selective Adversarial Networks”

总的来说,SAN的思想是让迁移学习“Partial Transfer Learning with Selective Adversarial Networks” 通过有监督的方式优化标签预测器,最小化预测损失值,让网络根据迁移学习“Partial Transfer Learning with Selective Adversarial Networks” 尽可能分类好样本,同时又要让域判别器的损失最大化,以至于域判别器能够更准确的判断出迁移学习“Partial Transfer Learning with Selective Adversarial Networks” 是属于所有类别k中的哪一类,好给样本分配权重,让属于与目标域相关的源域类别样本的权值高,而属于异常类的权值低。

 

 

实验结果

迁移学习“Partial Transfer Learning with Selective Adversarial Networks”