FDNet笔记

Learning Fully Dense Neural Networks for Image Semantic Segmentation

1、融合feature map时,concate所有前层feature map,encoder network is based on the DenseNet-264
2、boundary-aware loss:边界像素作为hard example

Architecture

FDNet笔记
FDNet笔记

Boundary-aware loss

根据pixel到boundary的距离,将pixel划分为多个set,每个set赋不同weight α
FDNet笔记
融合feature map均参与loss计算
FDNet笔记

Implementation details

Training:
Random crops of 512×512
horizontal flip
“poly” learning rate policy
train the dataset with 30K iterations.
The initial learning rate is set to 0:00025. We set momentum to 0:9 and weight decay to 0:0005.
Inference
multi-scale inference:
pad images with mean value
Horizontal flipping
multi-scale inference,ranging from 0.6 to 1.4
average the predictions on the same image across different scales for the final prediction
average the predictions on the
same image across different scales for the final prediction
FDNet笔记
FDNet笔记