Efficient Image Dehazing with Boundary Constraint and Contextual Regularization
项目主页:http://www.escience.cn/people/menggaofeng/Publication.html
摘要
提出的原因:Images captured in foggy weather conditions often suffer from bad visibility.
提出的方法:In this paper, we propose an efficient regularization method to remove hazes from a single input image. Our method benefits much from an exploration on the inherent boundary constraint on the transmission function. This constraint, combined with a weighted L1−norm based contextual regularization, is modeled into an optimization problem to estimate the unknown scene transmission. A quite efficient algorithm based on variable splitting is also presented to solve the problem.
方法优势:The proposed method requires only a few general assumptions and can restore a high-quality haze-free image with faithful colors and fine image details.
实验结果:Experimental results on a variety of haze images demonstrate the effectiveness and efficiency of the proposed method.
-
现存的方法大多数研究方向为探索额外的先验和限制(priors和constrainst),跟随他们的脚步,提出
-
方法:得益于对传输函数固有边界约束的探索,提出了一种有效的正则化方法来去除单输入图像中的模糊。该约束与基于L1-范数的加权上下文正则化相结合,被建模为一个优化问题来估计未知的场景传输。提出了一种基于变量分割的高效算法。
-
贡献:
(1)a new constraint on the scene transmission:有很好的几何解释;
(2)a new contextual regularization:在去雾中加入滤波器组来减弱图像噪声,增强一些有趣的图像结构;
(3)an efficient optimization scheme,:快速处理大尺寸图像。
算法步骤:
实验参数:
正则化:
1,从模型修正上看,起了一个trade-off作用,用于平衡学习过程中两个基本量,名字诸如bias-variance、拟合能力-泛化能力、损失函数-推广能力、经验风险-结构风险等等;
2,从模型求解上看,正则化提供了一种唯一解的可能,众所周知,光用最小二乘拟合可能出现无数组解,加个L1或L2正则化项能有唯一解。