Sequence-Aware Recommendation with Long-Term and Short-Term Attention Memory Networks(LSAMN)

Time:2019

Author:Daochang Chen, Rui Zhang, Jianzhong Qi, Bo Yuan(清华)

 

Abstract

在电商场景下,一个session里各个购买商品对于预测下一个购买物品的权重是不同的。使用Attention Memory Network来学习每个session里的embedding、用户的长期兴趣和短期兴趣。

 

Model Architecture

Sequence-Aware Recommendation with Long-Term and Short-Term Attention Memory Networks(LSAMN)

LSAMN使用一个two-level attention embedding memory network来学习用户长期兴趣和短期动态兴趣之间的关系,同时学习一个session里商品间的联系。two-level attention memory network在两个embedding spaces里对用户长期兴趣和短期兴趣建模。

  • embedding network把user id和item id映射进两个隐向量空间里
  • session-level attention memory network(SMN)计算每个用户的session embedding

Sequence-Aware Recommendation with Long-Term and Short-Term Attention Memory Networks(LSAMN)Sequence-Aware Recommendation with Long-Term and Short-Term Attention Memory Networks(LSAMN)

Sequence-Aware Recommendation with Long-Term and Short-Term Attention Memory Networks(LSAMN)是session里物品i的attention weight,Sequence-Aware Recommendation with Long-Term and Short-Term Attention Memory Networks(LSAMN)是在时间t,user u的session embedding

  • preference-level feed-forward neural memory network(PMN)学习当前场景下用户长短期兴趣的attention

Sequence-Aware Recommendation with Long-Term and Short-Term Attention Memory Networks(LSAMN)

 

Experiments

数据:Amazon数据集(Sports and Outdoors、Health and Personal Care、Clothing Shoes and Jewelry)

  • 用户-物品的购买记录
  • 每一个session包含用户一天内购买的物品

数据处理:

  • 去除掉长尾用户(购买次数少于10次或者少于3个session)和商品(被购买次数少于10次)

Sequence-Aware Recommendation with Long-Term and Short-Term Attention Memory Networks(LSAMN)

  • 用户的最后一个session作为测试集,剩余的session作为训练集

 

Reference