面试必备:HashMap、Hashtable、ConcurrentHashMap的原理与区别

下面直接来干货,先说这三个Map的区别:

HashTable

  • 底层数组+链表实现,无论key还是value都不能为null,线程安全,实现线程安全的方式是在修改数据时锁住整个HashTable,效率低,ConcurrentHashMap做了相关优化
  • 初始size为11,扩容:newsize = olesize*2+1
  • 计算index的方法:index = (hash & 0x7FFFFFFF) % tab.length

HashMap

  • 底层数组+链表实现,可以存储null键和null值,线程不安全
  • 初始size为16,扩容:newsize = oldsize*2,size一定为2的n次幂
  • 扩容针对整个Map,每次扩容时,原来数组中的元素依次重新计算存放位置,并重新插入
  • 插入元素后才判断该不该扩容,有可能无效扩容(插入后如果扩容,如果没有再次插入,就会产生无效扩容)
  • 当Map中元素总数超过Entry数组的75%,触发扩容操作,为了减少链表长度,元素分配更均匀
  • 计算index方法:index = hash & (tab.length – 1)

 

HashMap的初始值还要考虑加载因子:

  •  哈希冲突:若干Key的哈希值按数组大小取模后,如果落在同一个数组下标上,将组成一条Entry链,对Key的查找需要遍历Entry链上的每个元素执行equals()比较。
  • 加载因子:为了降低哈希冲突的概率,默认当HashMap中的键值对达到数组大小的75%时,即会触发扩容。因此,如果预估容量是100,即需要设定100/0.75=134的数组大小。
  • 空间换时间:如果希望加快Key查找的时间,还可以进一步降低加载因子,加大初始大小,以降低哈希冲突的概率。

HashMap和Hashtable都是用hash算法来决定其元素的存储,因此HashMap和Hashtable的hash表包含如下属性:

  • 容量(capacity):hash表中桶的数量
  • 初始化容量(initial capacity):创建hash表时桶的数量,HashMap允许在构造器中指定初始化容量
  • 尺寸(size):当前hash表中记录的数量
  • 负载因子(load factor):负载因子等于“size/capacity”。负载因子为0,表示空的hash表,0.5表示半满的散列表,依此类推。轻负载的散列表具有冲突少、适宜插入与查询的特点(但是使用Iterator迭代元素时比较慢)

除此之外,hash表里还有一个“负载极限”,“负载极限”是一个0~1的数值,“负载极限”决定了hash表的最大填满程度。当hash表中的负载因子达到指定的“负载极限”时,hash表会自动成倍地增加容量(桶的数量),并将原有的对象重新分配,放入新的桶内,这称为rehashing。

HashMap和Hashtable的构造器允许指定一个负载极限,HashMap和Hashtable默认的“负载极限”为0.75,这表明当该hash表的3/4已经被填满时,hash表会发生rehashing。

“负载极限”的默认值(0.75)是时间和空间成本上的一种折中:

  • 较高的“负载极限”可以降低hash表所占用的内存空间,但会增加查询数据的时间开销,而查询是最频繁的操作(HashMap的get()与put()方法都要用到查询)
  • 较低的“负载极限”会提高查询数据的性能,但会增加hash表所占用的内存开销

程序猿可以根据实际情况来调整“负载极限”值。

ConcurrentHashMap

  • 底层采用分段的数组+链表实现,线程安全
  • 通过把整个Map分为N个Segment,可以提供相同的线程安全,但是效率提升N倍,默认提升16倍。(读操作不加锁,由于HashEntry的value变量是 volatile的,也能保证读取到最新的值。)
  • Hashtable的synchronized是针对整张Hash表的,即每次锁住整张表让线程独占,ConcurrentHashMap允许多个修改操作并发进行,其关键在于使用了锁分离技术
  • 有些方法需要跨段,比如size()和containsValue(),它们可能需要锁定整个表而而不仅仅是某个段,这需要按顺序锁定所有段,操作完毕后,又按顺序释放所有段的锁
  • 扩容:段内扩容(段内元素超过该段对应Entry数组长度的75%触发扩容,不会对整个Map进行扩容),插入前检测需不需要扩容,有效避免无效扩容

 

Hashtable和HashMap都实现了Map接口,但是Hashtable的实现是基于Dictionary抽象类的。Java5提供了ConcurrentHashMap,它是HashTable的替代,比HashTable的扩展性更好。

HashMap基于哈希思想,实现对数据的读写。当我们将键值对传递给put()方法时,它调用键对象的hashCode()方法来计算hashcode,然后找到bucket位置来存储值对象。当获取对象时,通过键对象的equals()方法找到正确的键值对,然后返回值对象。HashMap使用链表来解决碰撞问题,当发生碰撞时,对象将会储存在链表的下一个节点中。HashMap在每个链表节点中储存键值对对象。当两个不同的键对象的hashcode相同时,它们会储存在同一个bucket位置的链表中,可通过键对象的equals()方法来找到键值对。如果链表大小超过阈值(TREEIFY_THRESHOLD,8),链表就会被改造为树形结构。

在HashMap中,null可以作为键,这样的键只有一个,但可以有一个或多个键所对应的值为null。当get()方法返回null值时,即可以表示HashMap中没有该key,也可以表示该key所对应的value为null。因此,在HashMap中不能由get()方法来判断HashMap中是否存在某个key,应该用containsKey()方法来判断。而在Hashtable中,无论是key还是value都不能为null。

Hashtable是线程安全的,它的方法是同步的,可以直接用在多线程环境中。而HashMap则不是线程安全的,在多线程环境中,需要手动实现同步机制。

Hashtable与HashMap另一个区别是HashMap的迭代器(Iterator)是fail-fast迭代器,而Hashtable的enumerator迭代器不是fail-fast的。所以当有其它线程改变了HashMap的结构(增加或者移除元素),将会抛出ConcurrentModificationException,但迭代器本身的remove()方法移除元素则不会抛出ConcurrentModificationException异常。但这并不是一个一定发生的行为,要看JVM。

先看一下简单的类图:

面试必备:HashMap、Hashtable、ConcurrentHashMap的原理与区别

  

从类图中可以看出来在存储结构中ConcurrentHashMap比HashMap多出了一个类Segment,而Segment是一个可重入锁。

ConcurrentHashMap是使用了锁分段技术来保证线程安全的。

锁分段技术:首先将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。 

先寻找segment一次Hash,再寻找数据两次Hash

ConcurrentHashMap提供了与Hashtable和SynchronizedMap不同的锁机制。Hashtable中采用的锁机制是一次锁住整个hash表,从而在同一时刻只能由一个线程对其进行操作;而ConcurrentHashMap中则是一次锁住一个桶。

ConcurrentHashMap默认将hash表分为16个桶,诸如get、put、remove等常用操作只锁住当前需要用到的桶。这样,原来只能一个线程进入,现在却能同时有16个写线程执行,并发性能的提升是显而易见的。

为什么使用ConcurrentHashMap

  • 在多线程环境中使用HashMap的put方法有可能导致程序死循环,因为多线程可能会导致HashMap形成环形链表,即链表的一个节点的next节点永不为null,就会产生死循环。这时,CPU的利用率接近100%,所以并发情况下不能使用HashMap。

  • HashTable通过使用synchronized保证线程安全,但在线程竞争激烈的情况下效率低下。因为当一个线程访问HashTable的同步方法时,其他线程只能阻塞等待占用线程操作完毕。

  • ConcurrentHashMap使用分段锁的思想,对于不同的数据段使用不同的锁,可以支持多个线程同时访问不同的数据段,这样线程之间就不存在锁竞争,从而提高了并发效率。

简介

在阅读ConcurrentHashMap的源码时,有一段相关描述。

The primary design goal of this hash table is to maintain concurrent readability(typically method get(), but also iterators and related methods) while minimizing update contention. Secondary goals are to keep space consumption about the same or better than java.util.HashMap, and to support high initial insertion rates on an empty table by many threads.

大致意思就是: ConcurrentHashMap的主要设计目的是保持并发的可读性(通常是指的get()方法的使用,同时也包括迭代器和相关方法),同时最小化更新征用(即在进行插入操作或者扩容时也可以保持其他数据段的访问)。第二个目标就是在空间利用方面保持与HashMap一致或者更好,并且支持多线程在空表的初始插入速率。

Java7与Java8中的ConcurrentHashMap:

在ConcurrentHashMap中主要通过锁分段技术实现上述目标。

在Java7中,ConcurrentHashMap由Segment数组结构和HashEntry数组组成。Segment是一种可重入锁,是一种数组和链表的结构,一个Segment中包含一个HashEntry数组,每个HashEntry又是一个链表结构。正是通过Segment分段锁,ConcurrentHashMap实现了高效率的并发。

在Java8中,ConcurrentHashMap去除了Segment分段锁的数据结构,主要是基于CAS操作保证保证数据的获取以及使用synchronized关键字对相应数据段加锁实现了主要功能,这进一步提高了并发性。同时同时为了提高哈希碰撞下的寻址性能,Java 8在链表长度超过一定阈值(8)时将链表(寻址时间复杂度为O(N))转换为红黑树(寻址时间复杂度为O(long(N)))。

Java8中ConcurrentHashMap的结构

在Java8中,ConcurrentHashMap弃用了Segment类,但是保留了Segment属性,用于序列化。目前ConcurrentHashMap采用Node类作为基本的存储单元,每个键值对(key-value)都存储在一个Node中。同时Node也有一些子类,TreeNodes用于树结构中(当链表长度大于8时转化为红黑树);TreeBins用于维护TreeNodes。当链表转树时,用于封装TreeNode。也就是说,ConcurrentHashMap的红黑树存放的是TreeBin,而不是treeNode;ForwordingNodes是一个重要的结构,它用于ConcurrentHashMap扩容时,是一个标志节点,内部有一个指向nextTable的属性,同时也提供了查找的方法;

CAS:在判断数组中当前位置为null的时候,使用CAS来把这个新的Node写入数组中对应的位置

synchronized :当数组中的指定位置不为空时,通过加锁来添加这个节点进入数组(链表<8)或者是红黑树(链表>=8)