第二个pytorch任务
task2
import torch
from torch.autograd import Variable
import torch.nn.functional as tnf
import matplotlib.pyplot as plt
x=torch.unsqueeze(torch.linspace(-1,1,100),dim=1)
y=x.pow(4)+0.2*torch.rand(x.size())
x,y=Variable(x),Variable(y)
plt.scatter(x.data.numpy(),y.data.numpy())
plt.show()
生成数据`
class Net(torch.nn.Module):
def __init__(self,n_features,n_hidden,n_output):
super(Net,self).__init__()
self.hidden=torch.nn.Linear(n_features,n_hidden)
self.predict=torch.nn.Linear(n_hidden,n_output)
def forward(self,x):
x=torch.relu(self.hidden(x))
x=self.predict(x)
return x
net=Net(1,10,1)
print(net)
plt.ion()
plt.show()
optimizer=torch.optim.SGD(net.parameters(),lr=0.5)
loss_func=torch.nn.MSELoss() ##均方差
for t in range(100):
prediction=net(x)
loss=loss_func(prediction,y)#计算误差
optimizer.zero_grad()#清空上一步残余的参数值
loss.backward()#误差反向传播
optimizer.step()#将参数更新值施加到参数上
if t % 5 == 0:
plt.cla()
plt.scatter(x.data.numpy(),y.data.numpy())
plt.plot(x.data.numpy(),prediction.data.numpy(),'r-',lw=5)
plt.text(0.5,0,'Loss=%.4f ' % loss.data[0],fontdict=({'size':20,'color':'red'}))
plt.pause(0.1)
plt.ioff()
plt.show()
曲线
总结:没有看基本知识,只看莫烦的pytorch代码,学习起来很吃力