工程数学基础

参考:DR_CAN

1.特征值与特征向量

  在数学上,特别是线性代数中,对于一个给定的线性变换 A A A,它的特征向量 v v v经过这个线性变换的作用之后,得到的新向量仍然与原来的 v v v保持在同一条直线上。但其长度或方向也许会改变。即
A v = λ v Av=\lambda v Av=λv
其中 λ \lambda λ为标量,即特征向量的长度在该线性变换下缩放的比例,称为其特征值。

线性变化
A = [ 1 1 4 − 2 ] , v 1 = [ 1 2 ] A=\begin{bmatrix} 1 & 1\\4 &-2\end{bmatrix}, v_1=\begin{bmatrix}1 \\2\end{bmatrix} A=[1412],v1=[12]
A v 1 = [ 3 0 ] Av_1=\begin{bmatrix}3 \\0\end{bmatrix} Av1=[30]
v 1 → A v 1 v_1 \to Av_1 v1Av1
v 2 = [ 1 1 ] v_2=\begin{bmatrix}1 \\1\end{bmatrix} v2=[11]
A v 2 = 2 [ 1 1 ] = 2 v 2 Av_2=2\begin{bmatrix}1 \\1\end{bmatrix}=2v_2 Av2=2[11]=2v2
A v 2 Av_2 Av2 v 2 v_2 v2在一条直线上, v 2 v_2 v2为特征向量, λ = 2 \lambda =2 λ=2为特征值
工程数学基础


如何求解特征值和特征向量?

A v = λ v Av=\lambda v Av=λv
A v − λ v = 0 Av-\lambda v=0 Avλv=0
( A − λ I ) v = 0 (A-\lambda I)v=0 (AλI)v=0
其中 I I I为单位矩阵 [ 1 1 ⋯ 1 ] \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \cdots & \\ & & &1\end{bmatrix} 111

式子有非零解,则有
∣ A − λ I ∣ = 0 |A-\lambda I|=0 AλI=0
A = [ 1 1 4 − 2 ] A=\begin{bmatrix} 1 & 1\\4 &-2\end{bmatrix} A=[1412]

A − λ I = [ 1 − λ 1 4 − 2 − λ ] A-\lambda I=\begin{bmatrix}1-\lambda & 1\\ 4 &-2-\lambda \end{bmatrix} AλI=[1λ412λ]
∣ A − λ I ∣ = 0 |A-\lambda I|=0 AλI=0

⇒ ∣ 1 − λ 1 4 − 2 − λ ∣ = 0 \Rightarrow \begin{vmatrix}1-\lambda & 1\\ 4 &-2-\lambda \end{vmatrix}=0 1λ412λ=0
⇒ ( λ − 2 ) ( λ + 3 ) = 0 \Rightarrow (\lambda -2)(\lambda +3)=0 (λ2)(λ+3)=0
λ 1 = 2 , λ 2 = − 3 \lambda_1=2,\lambda_2=-3 λ1=2,λ2=3

将计算得到的代回去, λ 1 = 2 \lambda_1=2 λ1=2
[ 1 − 2 1 4 − 2 − 2 ] v 1 = 0 \begin{bmatrix}1-2 & 1\\ 4 &-2-2 \end{bmatrix}v_1=0 [124122]v1=0

[ − 1 1 4 − 4 ] [ v 1 v 2 ] = 0 \begin{bmatrix}-1 & 1\\ 4 &-4 \end{bmatrix}\begin{bmatrix}v_1 \\v_2\end{bmatrix}=0 [1414][v1v2]=0
− v 11 + v 12 = 0 4 v 11 − 4 v 12 = 0 -v_{11}+v_{12}=0\\ 4v_{11}-4v_{12}=0 v11+v12=04v114v12=0
⇒ v 11 = v 12 \Rightarrow v_{11}=v_{12} v11=v12

可任取一组解: v 11 = 1 , v 12 = 1 v_{11}=1,v_{12}=1 v11=1,v12=1

v 1 = [ 1 1 ] v_1=\begin{bmatrix}1 \\1\end{bmatrix} v1=[11]

同理求得 λ 1 = − 3 \lambda_1=-3 λ1=3
4 v 21 + v 22 = 0 4v_{21}+v_{22}=0 4v21+v22=0
可取 v 21 = 1 , v 22 = − 4 v_{21}=1,v_{22}=-4 v21=1,v22=4

v 2 = [ 1 − 4 ] v_2=\begin{bmatrix}1 \\-4\end{bmatrix} v2=[14]


应用:化对角矩阵,解耦,Decouple

设一个新的矩阵(过度矩阵 corrdinate transformation matrix)
P = [ v 1 v 2 ] P=\begin{bmatrix}v_1 &v_2\end{bmatrix} P=[v1v2]

A P = A [ v 1 v 2 ] = A [ v 11 v 12 v 21 v 22 ] = [ A [ v 11 v 12 ] A [ v 21 v 22 ] ] = [ λ 1 [ v 11 v 12 ] λ 2 [ v 21 v 22 ] ] = [ λ 1 v 11 λ 2 v 21 λ 1 v 21 λ 2 v 22 ] = [ v 11 v 21 v 21 v 22 ] [ λ 1 0 0 λ 2 ] = P Λ \begin{aligned} AP & = A\begin{bmatrix}v_1 &v_2\end{bmatrix} = A\begin{bmatrix}v_{11} &v_{12}\\v_{21} &v_{22}\end{bmatrix}\\ & = \begin{bmatrix} A\begin{bmatrix}v_{11} \\v_{12}\end{bmatrix} &A\begin{bmatrix}v_{21} \\v_{22}\end{bmatrix} \end{bmatrix} \\ & = \begin{bmatrix} \lambda_1 \begin{bmatrix}v_{11} \\v_{12}\end{bmatrix} &\lambda_2 \begin{bmatrix}v_{21} \\v_{22}\end{bmatrix} \end{bmatrix}\\ & = \begin{bmatrix} \lambda_1 v_{11} &\lambda_2v_{21}\\ \lambda_1 v_{21} &\lambda_2v_{22} \end{bmatrix} \\ & = \begin{bmatrix} v_{11} &v_{21}\\ v_{21} &v_{22} \end{bmatrix}\begin{bmatrix} \lambda_1 & 0\\ 0 &\lambda_2 \end{bmatrix}\\ &=P \Lambda \end{aligned} AP=A[v1v2]=A[v11v21v12v22]=[A[v11v12]A[v21v22]]=[λ1[v11v12]λ2[v21v22]]=[λ1v11λ1v21λ2v21λ2v22]=[v11v21v21v22][λ100λ2]=PΛ

P − 1 A P = P − 1 P Λ P^{-1}AP =P^{-1}P \Lambda P1AP=P1PΛ
P − 1 A P = Λ P^{-1}AP = \Lambda P1AP=Λ


微分方程,状态空间表达式

d x 1 d t = x 1 + x 2 d x 2 d t = 4 x 1 − 2 x 2 \frac{\mathrm{d} x_1}{\mathrm{d} t} =x_1+x_2\\ \frac{\mathrm{d} x_2}{\mathrm{d} t} =4x_1-2x_2 dtdx1=x1+x2dtdx2=4x12x2

d d t [ x 1 x 2 ] = [ 1 1 4 − 2 ] [ x 1 x 2 ] \frac{\mathrm{d} }{\mathrm{d} t} \begin{bmatrix}x_1 \\x_2\end{bmatrix} =\begin{bmatrix} 1 & 1\\4 &-2\end{bmatrix} \begin{bmatrix}x_1 \\x_2\end{bmatrix} dtd[x1x2]=[1412][x1x2]

x ˙ = A x \dot x=Ax x˙=Ax

x = P y , x ˙ = P y ˙ = A x = A P y , P = [ 1 1 1 − 4 ] x=Py,\dot x=P\dot y=Ax=APy,P=\begin{bmatrix} 1 & 1\\ 1 &-4\end{bmatrix} x=Py,x˙=Py˙=Ax=APy,P=[1114]

P − 1 P y ˙ = P − 1 A P y P^{-1}P\dot y=P^{-1}APy P1Py˙=P1APy
y ˙ = P − 1 A P y = Λ y \dot y=P^{-1}APy=\Lambda y y˙=P1APy=Λy

Λ = [ λ 1 0 0 λ 2 ] = [ 2 0 0 − 3 ] \Lambda=\begin{bmatrix} \lambda_1 & 0\\0 &\lambda_2 \end{bmatrix}=\begin{bmatrix} 2& 0\\0 &-3\end{bmatrix} Λ=[λ100λ2]=[2003]

y ˙ = [ 2 0 0 − 3 ] y \dot y= \begin{bmatrix} 2& 0\\0 &-3\end{bmatrix}y y˙=[2003]y

y ˙ 1 = 2 y 1 y ˙ 2 = − 3 y 2 \dot y_1=2y_1\\\dot y_2=-3y_2 y˙1=2y1y˙2=3y2

解微分方程
y 1 = C 1 e 2 t y ˙ 2 = C 2 e − 3 t y_1=C_1 e^{2t}\\\dot y_2=C_2 e^{-3t} y1=C1e2ty˙2=C2e3t
C 1 , C 2 C_1,C_2 C1,C2为常数

x = P y = [ 1 1 1 − 4 ] [ C 1 e 2 t C 2 e − 3 t ] = [ C 1 e 2 t + C 2 e − 3 t C 1 e 2 t − 4 C 2 e − 3 t ] x=Py=\begin{bmatrix} 1 & 1\\ 1 &-4\end{bmatrix}\begin{bmatrix}C_1 e^{2t}\\C_2 e^{-3t}\end{bmatrix}\\=\begin{bmatrix}C_1 e^{2t}+C_2 e^{-3t}\\C_1 e^{2t}-4C_2 e^{-3t}\end{bmatrix} x=Py=[1114][C1e2tC2e3t]=[C1e2t+C2e3tC1e2t4C2e3t]

2.泰勒级数&泰勒公式

对于一个线性系统,它应该符合叠加原理,如
x ˙ = f ( x ) \dot x=f(x) x˙=f(x)

  • x 1 , x 2 x_1,x_2 x1,x2是解
  • x 3 = k 1 x 1 + k 2 x 2 , k 1 , k 2 x_3=k_1x_1+k_2x_2,\quad k_1,k_2 x3=k1x1+k2x2,k1,k2为常数
  • x 3 x_3 x3是解

线性化:泰勒级数
在导数附近线性化

3.线性时不变系统的冲击响应与卷积

linear time invariant

o { f ( t ) } = x ( t ) o\left \{ f(t) \right \} =x(t) o{f(t)}=x(t)
线性
o { f 1 ( t ) + f 2 ( t ) } = x 1 ( t ) + x 2 ( t ) o\left \{ f_1(t)+ f_2(t) \right \} =x_1(t)+ x_2(t) o{f1(t)+f2(t)}=x1(t)+x2(t)
o { a f ( t ) } = a x ( t ) o\left \{ af(t) \right \} =ax(t) o{af(t)}=ax(t)
叠加原理
o { a f 1 ( t ) + b f 2 ( t ) } = a x 1 ( t ) + b x 2 ( t ) o\left \{ af_1(t)+b f_2(t) \right \} =ax_1(t)+ bx_2(t) o{af1(t)+bf2(t)}=ax1(t)+bx2(t)

时不变
o { f ( t − τ ) } = x ( t − τ ) o\left \{ f(t-\tau) \right \} =x(t-\tau) o{f(tτ)}=x(tτ)

弹簧质量阻尼系统
工程数学基础
对小块施加短暂的外力,及其响应

工程数学基础

系统的传递方程作拉普拉斯逆变换等于卷积
L − 1 [ F ( s ) H ( s ) ] = L − 1 [ X ( s ) ] ⇒ f ( t ) ∗ h ( t ) = x ( t ) \mathcal{L}^{-1}\left [ F(s)H(s) \right ] =\mathcal{L}^{-1}\left [ X(s) \right ]\\ \Rightarrow f(t)*h(t)=x(t) L1[F(s)H(s)]=L1[X(s)]f(t)h(t)=x(t)

现在输入连续的外力,为了便于分析将其离散化
工程数学基础
连续化
lim ⁡ Δ T → 0 ∑ → ∫ \lim_{\Delta T \to 0} \sum \to \int ΔT0lim


单位冲激响应(狄拉克函数)
宽度为0,面积为1
δ ( t ) = { 0 , t ≠ 0 ∫ − ∞ ∞ δ ( t ) d t = 1 \delta(t)=\begin{cases}0,t\ne 0\\\int_{-\infty} ^\infty \delta(t)dt=1\end{cases} δ(t)={0,t=0δ(t)dt=1

它是纯数学上的意义,现实生活不存在,通过另外一个辅助函数来理解它
δ Δ ( t ) = { 1 Δ T , 0 < t < Δ T 0 , e l s e \delta_\Delta(t)=\begin{cases}\frac{1}{\Delta T},0<t < \Delta T\\0,else\end{cases} δΔ(t)={ΔT1,0<t<ΔT0,else
工程数学基础

lim ⁡ Δ T → 0 δ Δ = δ ( t ) \lim_{\Delta T \to 0} \delta_\Delta = \delta(t) ΔT0limδΔ=δ(t)

对小块施加单位冲激响应
工程数学基础

f ( t ) f(t) f(t) x ( t ) x(t) x(t)
δ Δ ( t ) \delta_\Delta (t) δΔ(t) h Δ ( t ) h_\Delta (t) hΔ(t)
δ Δ ( t − i Δ T ) \delta_\Delta (t -i\Delta T) δΔ(tiΔT) h Δ ( t − i Δ T ) h_\Delta (t -i\Delta T) hΔ(tiΔT)
A δ Δ ( t − i Δ T ) A\delta_\Delta (t -i\Delta T) AδΔ(tiΔT) A h Δ ( t − i Δ T ) Ah_\Delta (t -i\Delta T) AhΔ(tiΔT)
Δ T f ( i Δ T ) δ Δ ( t − i Δ T ) \Delta Tf(i\Delta T)\delta_\Delta (t -i\Delta T) ΔTf(iΔT)δΔ(tiΔT) Δ T f ( i Δ T ) h Δ ( t − i Δ T ) \Delta Tf(i\Delta T)h_\Delta (t -i\Delta T) ΔTf(iΔT)hΔ(tiΔT)

t = i Δ T t=i\Delta T t=iΔT时刻冲激响应:
x ( t ) = ∑ i = 0 I Δ T f ( i Δ T ) h Δ ( t − i Δ T ) x(t)=\sum_{i=0}^I \Delta Tf(i\Delta T)h_\Delta (t -i\Delta T) x(t)=i=0IΔTf(iΔT)hΔ(tiΔT)
lim ⁡ Δ T → 0 , h Δ ( t ) → h ( t ) , Δ T = d τ , i Δ T = τ \lim_{\Delta T \to 0},h_\Delta (t) \to h(t),\Delta T=d\tau,i\Delta T=\tau limΔT0,hΔ(t)h(t),ΔT=dτ,iΔT=τ:
x ( t ) = ∫ 0 t f ( τ ) h ( t − τ ) d τ = f ( t ) ∗ h ( t ) x(t)=\int_{0}^t f(\tau)h (t -\tau) d \tau=f(t)*h(t) x(t)=0tf(τ)h(tτ)dτ=f(t)h(t)

对冲激响应作拉普拉斯变换
L [ δ ( t ) ] = 1 \mathcal{L}[\delta(t)]=1 L[δ(t)]=1
X ( s ) = 1 ⋅ H ( s ) = H ( s ) X(s)=1\cdot H(s)=H(s) X(s)=1H(s)=H(s)

4.卷积的拉普拉斯变换

拉普拉斯变换
X ( s ) = L [ x ( t ) ] = ∫ 0 ∞ x ( t ) e − s t d t X(s)=\mathcal{L}[x(t)]=\int_0^\infty x(t)e^{-st}dt X(s)=L[x(t)]=0x(t)estdt

卷积
x ( t ) ∗ g ( t ) = ∫ 0 t x ( τ ) g ( t − τ ) d t x(t)*g(t)=\int_0^t x(\tau)g(t-\tau)dt x(t)g(t)=0tx(τ)g(tτ)dt

证明:
L [ x ( t ) ∗ g ( t ) ] = X ( s ) G ( s ) \mathcal{L}[x(t)*g(t)]=X(s)G(s) L[x(t)g(t)]=X(s)G(s)


L [ x ( t ) ∗ g ( t ) ] = ∫ 0 ∞ ∫ 0 t x ( τ ) g ( t − τ ) d τ e − s t d t = ∫ 0 ∞ ∫ τ ∞ x ( τ ) g ( t − τ ) e − s t d t d τ = ∫ 0 ∞ ∫ 0 ∞ x ( τ ) g ( u ) e − s ( u + τ ) d u d τ = ∫ 0 ∞ x ( τ ) e − s τ d τ ∫ 0 ∞ g ( u ) e − s u d u = X ( s ) G ( s ) \begin{aligned} \mathcal{L}[x(t)*g(t)] & = \int_0^\infty \int_0^t x(\tau)g(t-\tau)d\tau e^{-st}dt\\ & = \int_0^\infty \int_\tau^\infty x(\tau)g(t-\tau)e^{-st}dtd\tau \\ & = \int_0^\infty \int_0^\infty x(\tau)g(u)e^{-s(u+\tau)}dud\tau \\ & = \int_0^\infty x(\tau)e^{-s\tau} d\tau \int_0^\infty g(u)e^{-su}du\\ & = X(s)G(s) \end{aligned} L[x(t)g(t)]=00tx(τ)g(tτ)dτestdt=0τx(τ)g(tτ)estdtdτ=00x(τ)g(u)es(u+τ)dudτ=0x(τ)esτdτ0g(u)esudu=X(s)G(s)
其中, u = t − τ , d t = d u + d τ = d u , t ∈ [ τ , ∞ ) , u = t − τ ∈ [ 0 , ∞ ) u=t-\tau,dt=du+d\tau=du,t \in [\tau,\infty),u=t-\tau \in[0,\infty) u=tτ,dt=du+dτ=du,t[τ,),u=tτ[0,)
这是一个二重积分,就是去求体积,改变积分次序

工程数学基础

L [ x ( t ) ∗ g ( t ) ] = L [ x ( t ) ] L [ g ( t ) ] = X ( s ) G ( s ) \mathcal{L}[x(t)*g(t)] =\mathcal{L}[x(t)]\mathcal{L}[g(t)] =X(s)G(s) L[x(t)g(t)]=L[x(t)]L[g(t)]=X(s)G(s)

5.欧拉公式证明

e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta}=\cos \theta +i\sin \theta eiθ=cosθ+isinθ

f ( θ ) = e i θ cos ⁡ θ + i sin ⁡ θ f(\theta)=\frac{e^{i\theta}}{\cos \theta +i\sin \theta} f(θ)=cosθ+isinθeiθ

f ′ ( θ ) = i e i θ ( cos ⁡ θ + i sin ⁡ θ ) − e i θ ( − sin ⁡ θ + i cos ⁡ θ ) ( cos ⁡ θ + i sin ⁡ θ ) 2 = 0 f^{'}(\theta)=\frac{ie^{i\theta}(\cos \theta +i\sin \theta)-e^{i\theta}(-\sin \theta +i\cos \theta)}{(\cos \theta +i\sin \theta)^2}=0 f(θ)=(cosθ+isinθ)2ieiθ(cosθ+isinθ)eiθ(sinθ+icosθ)=0
说明 f ( θ ) f(\theta) f(θ)为常数
f ( 0 ) = e 0 cos ⁡ 0 + i sin ⁡ 0 = 1 f(0)=\frac{e^{0}}{\cos 0 +i\sin 0}=1 f(0)=cos0+isin0e0=1

e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta}=\cos \theta +i\sin \theta eiθ=cosθ+isinθ

6.复数的不同表达形式

x 2 − 2 x + 2 = 0 x^2-2x+2=0 x22x+2=0
x = 1 ± − 1 = 1 ± i x=1\pm \sqrt{-1}=1\pm i x=1±1 =1±i

工程数学基础


∣ z ∣ = a 2 + b 2 |z|=\sqrt{a^2+b^2} z=a2+b2
θ = arctan ⁡ b a \theta =\arctan \frac{b}{a} θ=arctanab


a = ∣ z ∣ cos ⁡ θ , b = ∣ z ∣ sin ⁡ θ a=|z|\cos \theta,b=|z|\sin \theta a=zcosθ,b=zsinθ
z = ∣ z ∣ cos ⁡ θ + ∣ z ∣ sin ⁡ θ i = ∣ z ∣ e i θ z=|z|\cos \theta+|z|\sin \theta i=|z|e^{i\theta} z=zcosθ+zsinθi=zeiθ


z 1 = ∣ z 1 ∣ e i θ z_1=|z_1|e^{i\theta} z1=z1eiθ
z 2 = ∣ z 2 ∣ e i θ z_2=|z_2|e^{i\theta} z2=z2eiθ
z 1 ⋅ z 2 = ∣ z 1 ∣ ∣ z 2 ∣ e i ( θ 1 + θ 2 ) z_1\cdot z_2=|z_1||z_2|e^{i(\theta_1+\theta_2)} z1z2=z1z2ei(θ1+θ2)


共轭
z 1 = a + b i z_1=a+bi z1=a+bi
z 2 = a − b i z_2=a-bi z2=abi