图像像素梯度
# 编辑梯度损失函数 import numpy as np import matplotlib.pyplot as plt def grad(img): b, h, w, c = img.shape g_y=img[:,1:,:,:]-img[:,:-1,:,:] #计算高度方向梯度 g_x=img[:,:,1:,:]-img[:,:,:-1,:] #计算宽度方向梯度 g_y1,g_y2=g_y[:,:,:-1,:],g_y[:,:,-1,:] g_x1,g_x2=g_x[:,:-1,:,:],g_x[:,-1,:,:] y1=np.arctan(g_y1 / (g_x1 + 1e-8)) y2=np.arctan(g_y2/1e-8) plt.imshow((np.abs(y1)/1.6).reshape(h-1, w-1, c)) plt.show() # return (np.sum(np.abs(y1))+np.sum(np.abs(y2)))/(b*h*w*c) if __name__ == '__main__': img=plt.imread('z.jpg') h, w, c = img.shape img=np.reshape(img,(1,h, w, c)) result = grad(img) print(result)