Latex
Katex1
Repeating fractions
$\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} \equiv 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$
(ϕ5−ϕ)e52π1≡1+1+1+1+1+⋯e−8πe−6πe−4πe−2π
Summation notation
$\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$
(∑k=1nakbk)2≤(∑k=1nak2)(∑k=1nbk2)
Sum of a Series
$\displaystyle\sum_{i=1}^{k+1}i$
i=1∑k+1i
$\displaystyle= \left(\sum_{i=1}^{k}i\right) +(k+1)$
=(i=1∑ki)+(k+1)
$\displaystyle= \frac{k(k+1)}{2}+k+1$
=2k(k+1)+k+1
$\displaystyle= \frac{k(k+1)+2(k+1)}{2}$
=2k(k+1)+2(k+1)
$\displaystyle= \frac{(k+1)(k+2)}{2}$
=2(k+1)(k+2)
$\displaystyle= \frac{(k+1)((k+1)+1)}{2}$
=2(k+1)((k+1)+1)
Product notation
$\displaystyle\text{ for }\lvert q\rvert < 1.$
for ∣q∣<1.
$= \displaystyle \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},$
=j=0∏∞(1−q5j+2)(1−q5j+3)1,
$\displaystyle1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots$
1+(1−q)q2+(1−q)(1−q2)q6+⋯
Inline math[^4]
<span class="math">...</span>
And $k_{n+1} = n^2 + k_n^2 - k_{n-1}$, text.
And kn+1=n2+kn2−kn−1, text.
Greek Letters
$\Gamma\ \Delta\ \Theta\ \Lambda\ \Xi\ \Pi\ \Sigma\ \Upsilon\ \Phi\ \Psi\ \Omega$
Γ Δ Θ Λ Ξ Π Σ Υ Φ Ψ Ω
$\alpha\ \beta\ \gamma\ \delta\ \epsilon\ \zeta\ \eta\ \theta\ \iota\ \kappa\ \lambda\ \mu\ \nu\ \xi\ \omicron\ \pi\ \rho\ \sigma\ \tau\ \upsilon\ \phi\ \chi\ \psi\ \omega$
α β γ δ ϵ ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ ϕ χ ψ ω
$\varepsilon\ \vartheta\ \varpi\ \varrho\ \varsigma\ \varphi$
ε ϑ ϖ ϱ ς φ
Arrows
$\gets\ \to\ \leftarrow\ \rightarrow\ \uparrow\ \Uparrow\ \downarrow\ \Downarrow\ \updownarrow\ \Updownarrow$
← → ← → ↑ ⇑ ↓ ⇓ ↕ ⇕
$\Leftarrow\ \Rightarrow\ \leftrightarrow\ \Leftrightarrow\ \mapsto\ \hookleftarrow$
⇐ ⇒ ↔ ⇔ ↦ ↩
$\leftharpoonup\ \leftharpoondown\ \rightleftharpoons\ \longleftarrow\ \Longleftarrow\ \longrightarrow$
↼ ↽ ⇌ ⟵ ⟸ ⟶
$\Longrightarrow\ \longleftrightarrow\ \Longleftrightarrow\ \longmapsto\ \hookrightarrow\ \rightharpoonup$
⟹ ⟷ ⟺ ⟼ ↪ ⇀
LaTeX code:
$\rightharpoondown\ \leadsto\ \nearrow\ \searrow\ \swarrow\ \nwarrow$
⇁ ⇝ ↗ ↘ ↙ ↖
Symbols
$\surd\ \barwedge\ \veebar\ \odot\ \oplus\ \otimes\ \oslash\ \circledcirc\ \boxdot\ \bigtriangleup$
√ ⊼ ⊻ ⊙ ⊕ ⊗ ⊘ ⊚ ⊡ △
$\bigtriangledown\ \dagger\ \diamond\ \star\ \triangleleft\ \triangleright\ \angle\ \infty\ \prime\ \triangle$
▽ † ⋄ ⋆ ◃ ▹ ∠ ∞ ′ △
Calculus
$\int u \frac{dv}{dx}\,dx=uv-\int \frac{du}{dx}v\,dx$
∫udxdvdx=uv−∫dxduvdx
$f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x}$
f(x)=∫−∞∞f^(ξ)e2πiξx
$\oint \vec{F} \cdot d\vec{s}=0$
∮F⋅ds=0
Lorenz Equations
$\begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{aligned}$
x˙y˙z˙=σ(y−x)=ρx−y−xz=−βz+xy
Cross Product
$\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix}$
V1×V2=∣∣∣∣∣∣i∂u∂X∂v∂Xj∂u∂Y∂v∂Yk00∣∣∣∣∣∣
Accents
$\hat{x}\ \vec{x}\ \ddot{x}$
x^ x x¨
Stretchy brackets
$\left(\frac{x^2}{y^3}\right)$
(y3x2)
Evaluation at limits
$\left.\frac{x^3}{3}\right|_0^1$
3x3∣∣∣01
Case definitions
$f(n) = \begin{cases} \frac{n}{2}, & \text{if } n\text{ is even} \\ 3n+1, & \text{if } n\text{ is odd} \end{cases}$
f(n)={2n,3n+1,if n is evenif n is odd
Maxwell’s Equations
$\begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}$
∇×B−c1∂t∂E∇⋅E∇×E+c1∂t∂B∇⋅B=c4πj=4πρ=0=0
$\begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\[1em] \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\[0.5em] \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\[1em] \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}$
∇×B−c1∂t∂E∇⋅E∇×E+c1∂t∂B∇⋅B=c4πj=4πρ=0=0
Statistics
$\frac{n!}{k!(n-k)!} = {^n}C_k$
k!(n−k)!n!=nCk
${n \choose k}$
(kn)
Fractions on fractions
$\frac{\frac{1}{x}+\frac{1}{y}}{y-z}$
y−zx1+y1
n-th root
$\sqrt[n]{1+x+x^2+x^3+\ldots}$
n1+x+x2+x3+…
Matrices
$\begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{pmatrix}$
⎝⎛a11a21a31a12a22a32a13a23a33⎠⎞
$begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$
⎣⎢⎡0⋮0⋯⋱⋯0⋮0⎦⎥⎤
Punctuation
$(x) = \sqrt{1+x} \quad (x \ge -1)$
f(x)=1+x(x≥−1)
$f(x) \sim x^2 \quad (x\to\infty)$
f(x)∼x2(x→∞)
$f(x) = \sqrt{1+x}, \quad x \ge -1$
f(x)=1+x,x≥−1
$f(x) \sim x^2, \quad x\to\infty$
f(x)∼x2,x→∞
Γ function
$\Gamma(n) = (n-1)!\quad\forall n\in\mathbb N$
Γ(n)=(n−1)!∀n∈N
Euler integral
$\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.$
Γ(z)=∫0∞tz−1e−tdt.