Coding and Paper Letter(一)

最近发现需要在快速阅读背景下,对快餐式资源做整理与收集。以Coding(以Github)和Paper(自己看到的一些论文,论文一般主要看题目和摘要做些简单小结)的资源为主。

1 Coding:

1.QGIS上的变形地图插件,我后面会专门来介绍变形地图这个主题的内容。

qgis-cartogram源码

Coding and Paper Letter(一)

2.火星坐标与地球坐标转换开源代码。

命令行版

Python版

项目与说明

3.空间统计开源软件GeoDa资源。

GeoDa 源码

Coding and Paper Letter(一)

4.空间统计分析开源Python库——PySAL。

PySAL GitHub

Coding and Paper Letter(一)

5.GIS资源链接整理。

Awesome GIS

6.R语言包(rasterVIS)。一个专门针对栅格做可视化的包。十分强大。

rasterVIS GitHub

Coding and Paper Letter(一)

7.基于CityEngine开发的地理设计工具箱。这个项目讨论了一系列工具,这些工具旨在使数据驱动设计能够支持大规模方案规划项目。这些工具旨在集成GIS和CityEngine,以支持创建大量3D内容,以支持城市规划/地理设计项目。创建的内容可用于创建图像作为剪切图纸的一部分(与数据驱动页面一起使用),或链接到Web地图中的Web内容(通过提供弹出窗口或Web场景链接到的内容)。这里提出的工作流程的重点是街道,但脚本也支持与建筑物/批次/分区可视化相关的项目。意图:这些工具的目的是通过结合使用GIS和CityEngine,实现大规模的数据驱动设计。

CityEngineToolKit-GeodesignToolkit GitHub

8.深度照片风格转换。基于深度学习的照片风格转换。

deep-photo-styletransfer 源码

Coding and Paper Letter(一)

9.R语言包(scanstatistics)。时空扫描统计算法的R包实现,这个算法最早由哈佛大学学者提出,用于疾病的空间统计分析。

scanstatistics GitHub

Coding and Paper Letter(一)

2 Paper:

1.Outdoor air pollution, green space, and cancer incidence in Saxony: A semi-individual cohort study/萨克森州的室外空气污染,绿色空间和癌症发病率:半个体的队列研究

这是目前比较有意思的一个方向,空气污染的人群暴露、绿色空间与疾病三者的关系。使用的是萨克森州的保健数据(主要研究了口腔和咽喉,皮肤——非黑色素瘤皮肤癌 - NMSC的癌症事件(2010-2014),前列腺癌,乳腺癌和结肠直肠癌等疾病),室外空气污染主要考虑PM10和NO2,绿色空间使用NDVI做表征,模型选用的是多层次泊松回归模型。结论主要是高空气污染会增加癌症患病风险,而增加住宅绿色空间则可以降低。

2.Spatial Morphing Kernel Regression For Feature Interpolation/基于空间变形核回归的高维特征空间插值

针对近年来兴起的带有地理标记的社交媒体数据——也就是志愿者地理信息数据(Volunteer Geographical Information,VGI)。这次用的是Flickr数据。首先是基于卷积神经网络(CNN)提取了Flickr图片的高维特征,然后针对提取的特征进行空间插值。比较了IDW,核回归(高斯核和空间变形核)不同插值方法的结果(以parcel classification结果为例)。

3.Social media data as a proxy for hourly fine-scale electric power consumption estimation/社交媒体数据作为小时级精细电力消耗估计的辅助数据

准确预测电力需求对现代电力系统的运行至关重要。不准确的负荷预测将显着影响电网效率。预测一个小区域(如建筑物)的电力需求长期以来一直是众所周知的挑战。这项研究分析了带有地理标记的推文与每小时电力消耗之间的关联。检索所有可用的带有地理标记的推文和电表读数,并在空间上汇总到研究区域中的每个建筑物。人类活动指标(推文所反映的)与电力消耗之间存在高度相关性,相关系数超过0.8。非常有意思的研究。