spark Streaming +kafka 的offset数据保存hbase或redis
Kafka做为一款流行的分布式发布订阅消息系统,以高吞吐、低延时、高可靠的特点著称,已经成为Spark Streaming常用的流数据来源。
常用的ETL架构
SparkStreaming直连方式读取kafka数据,使用MySQL保存偏移量
https://blog.****.net/Lu_Xiao_Yue/article/details/84110045
import scala.collection.mutable
/** 单个跟组情况
* 手工操作offset
* 1 从hbase获取offset,从kafka拉取数据
* 2 数据处理完后,把until offset 保存到hbase
* 3 kafka 长时间挂掉之后,从kafka最早的offset 开始读取 此处还需要处理
*
*/
object OffsetOperate {
var hbaseProp = PropertiesUtil.getProperties("hbase")
var kafkaconsumePro = PropertiesUtil.getProperties("kafkaconsume")
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("sparkStreaming - offset operate")
.setMaster("local[2]") // --master local[2] | spark://xx:7077 | yarn
.set("spark.testing.memory", "2147480000")
val sc = new SparkContext(conf)
val ssc = new StreamingContext(sc,Seconds(5))
//kafka配置
val kafkaParams = Map[String, Object](
"bootstrap.servers" -> kafkaconsumePro.getProperty("bootstrap.servers"),
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> kafkaconsumePro.getProperty("group"),
"auto.offset.reset" -> "earliest", // 第一次读取时从topic 首位置开始读取
"enable.auto.commit" -> (false: java.lang.Boolean)// kafka 不保存消费的offset
)
//监听频道
val topics = Array(kafkaconsumePro.getProperty("topics"))
// 获取hbase连接
val hbaseConf = HBaseConfiguration.create()
hbaseConf.set("hbase.zookeeper.quorum",hbaseProp.getProperty("quorum")) //zookeeper 集群
hbaseConf.set("hbase.zookeeper.property.client","2181")
hbaseConf.set("hbase.master", hbaseProp.getProperty("hbase_master"))
hbaseConf.set("hbase.defaults.for.version.skip", "true")
//获取连接对象
val conn = ConnectionFactory.createConnection(hbaseConf)
val admin = conn.getAdmin
val tn = TableName.valueOf("hbase_consumer_offset") //hbase 表名
val isExist = admin.tableExists(tn)
val streams : InputDStream[ConsumerRecord[String,String]]= {
if(isExist) {
val table = new HTable(hbaseConf, "hbase_consumer_offset")
val filter = new RowFilter(CompareOp.GREATER_OR_EQUAL, new BinaryComparator(Bytes.toBytes(topics + "_")))
println("============ 过滤器已经创建 ==========")
val s = new Scan()
s.setFilter(filter)
val rs = table.getScanner(s)
// 设置 offset
val fromOffsets = scala.collection.mutable.Map[TopicPartition, Long]()
var s1 = ""
var s2 = 0
var s3: Long = 0
for (r: Result <- rs.next(200)) {
println("rowKey : " + new String(r.getRow))
for (keyvalue: KeyValue <- r.raw()) {
if ("topic".equals(new String(keyvalue.getQualifier))) {
s1 = new String(keyvalue.getValue)
println("columnFamily :" + new String(keyvalue.getFamily) + " column :" +new String( keyvalue.getQualifier) + s1)
} else if ("partition".equals(new String(keyvalue.getQualifier))){
s2 = Bytes.toInt(keyvalue.getValue)
println("columnFamily :" + new String(keyvalue.getFamily) + " column :" + new String( keyvalue.getQualifier) + s2)
} else if("offset".equals(new String(keyvalue.getQualifier))) { //if("offset".equals(new String(keyvalue.getQualifier)))
s3 = Bytes.toLong(keyvalue.getValue)
println("columnFamily :" + new String(keyvalue.getFamily) + " column :" + new String( keyvalue.getQualifier) + s3)
}
}
fromOffsets.put(new TopicPartition(s1, s2), s3)
}
println("fromOffset is : "+fromOffsets)
KafkaUtils.createDirectStream(ssc, LocationStrategies.PreferConsistent,
ConsumerStrategies.Assign(fromOffsets.keySet, kafkaParams, fromOffsets)) //(fromOffsets.keySet,kafkaParams,fromOffsets))
}else{ //Hbase 里面不存在offset表,从topic首位置开始消费
val htable = new HTableDescriptor(TableName.valueOf("hbase_consumer_offset"))
htable.addFamily(new HColumnDescriptor(("topic_partition_offset")))
admin.createTable(htable)
println("表已经创建成功========" + htable)
KafkaUtils.createDirectStream(ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe(topics, kafkaParams))
}
}
// val dstream = streams.map(x=>URLDecoder.decode(x.value()))
// 操作成功后更新offset
streams.foreachRDD{ rdd =>
//if(!rdd.isEmpty()){
// 打成一个事务,把业务计算和offset保存放在一起,要么成功,要么一起失败,实现精确一次的消费
import scala.collection.JavaConversions._
val table = new HTable(hbaseConf,"hbase_consumer_offset")
table.setAutoFlush(false, false)
var putList:List[Put] = List()
val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges // RDD[ConsumerRecord[String,String]] 强转成offsetRanges
for(offsetRange <- offsetRanges){
println("the topic is "+offsetRange.topic)
println("the partition is "+offsetRange.partition)
println("the fromOffset is "+offsetRange.fromOffset)
println("the untilOffset is "+offsetRange.untilOffset)
println("the object is "+offsetRange)
// val table = new HTable(hbaseConf,"hbase_consumer_offset")
// table.setAutoFlush(false, false)
val put = new Put(Bytes.toBytes(offsetRange.topic+"_"+offsetRange.partition))
put.add(Bytes.toBytes("topic_partition_offset"),Bytes.toBytes("topic"),Bytes.toBytes(offsetRange.topic))
put.add(Bytes.toBytes("topic_partition_offset"),Bytes.toBytes("partition"),Bytes.toBytes(offsetRange.partition))
put.add(Bytes.toBytes("topic_partition_offset"),Bytes.toBytes("offset"),Bytes.toBytes(offsetRange.untilOffset))
putList = put+:putList
// println("add data success !")
}
println("the RDD records are "+rdd.map{x =>URLDecoder.decode(x.value())}.collect.foreach(println)) // 程序的计算逻辑
// }
table.put(putList)
table.flushCommits()
println("add and compute data success !")
}
ssc.start()
ssc.awaitTermination()
}
}
参考链接 :https://www.jianshu.com/p/667e0f58b7b9
实现的Spark Streaming代码如下(ConsumerRecord类不能序列化,使用时要注意,不要分发该类到其他工作节点上,避免错误打印)
其实说白了,官方提供的思路就是,把JavaInputDStream转换为OffsetRange对象,该对象具有topic对应的分区的所有信息,每次batch处理完,Spark Streaming都会自动更新该对象,所以你只需要找个合适的地方保存该对象(比如HBase、HDFS),就可以愉快的操纵offset了。
1、存储在redis(基于内存)读写更快,
2、多个服务器,多个组消费组,设计key:服务器_主题_分组_分区; value :offset
object KafkaDricteRedis {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName(“redis”).setMaster(“local[*]”)
val ssc = new StreamingContext(conf,new Duration(5000))
val groupid = "GB01" //组名
val topic = "wordcount3"//topic 名
//在redis中以 groupid/topic作为唯一标识 ,存储分区偏移量
//在Reids 使用的时hash类型来存储
val gtKey = groupid+"/"+topic
//topic
val topics = Set(topic)
//zk地址
val zkQuorum = "hadoop01:2181,hadoop02:2181,hadoop03:2181"
//brokerList
val brokerList = "hadoop01:9092,hadoop03:9092"
val kafkaParams = Map(
// metadata.broker.list
"metadata.broker.list"->brokerList,
"group.id"->groupid,
"auto.offset.reset"->kafka.api.OffsetRequest.SmallestTimeString
//从头开始消费
)
//记录topic 、分区对应的偏移量,在创建InputDStream时作为参数传如
//从这个偏移量开始读取
var fromOffset = Map[TopicAndPartition,Long]()
var kafkaDStream :InputDStream[(String,String)] = null
// 获取一个jedis连接
val conn = getConnection()
// conn.flushDB()
//jd.hget(groupid+topic,"")
//获取全部的keys
val values: util.Set[String] = conn.keys("*")
//println(values)
// [GB01/wordcount3] 分区数 偏移量
//如果keys中包含 GB01/wordcount3这样的key,则表示以前读取过
if(values.contains(gtKey)){
//获取key 为GB01/wordcount3 下面所对应的(k,v)
var allKey: util.Map[String, String] = conn.hgetAll(gtKey)
//导入后,可以把Java中的集合转换为Scala中的集合
import scala.collection.JavaConversions._
var list: List[(String, String)] = allKey.toList
//循环得到的(k,v)
//这里面的 k 对应的是分区, v对应的是偏移量
for (key <- list){ //这里的key是一个tuple类型
//new一个TopicAndPartition 把 topic 和分区数传入
val tp = new TopicAndPartition(topic,key._1.toInt)
//把每个topic 分区 对应的偏移量传入
fromOffset += tp -> key.2.toLong
}
//这里的是把数据(key ,value)是kafka 的key默认是null,
//value 是kafka中的value
val messageHandler =(mmd:MessageAndMetadata[String,String])=>{
( mmd.key(),mmd.message())
}
//创建一个InputDStream
kafkaDStream = KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder,(String,String)]
(ssc,kafkaParams,fromOffset,messageHandler)
}else{
//如果以前没有读取过,创建一个新的InputDStream
kafkaDStream = KafkaUtils.createDirect StreamString,String,StringDecoder,StringDecoder
}
//用来更新偏移量,OffsetRange中可以获取分区及偏移量
var OffsetRangs = ArrayOffsetRange
//
kafkaDStream.foreachRDD(kafkaRDD=> {
//这里面的RDD是kafkaRDD ,可以转换为HasOffsetRange
val ranges: HasOffsetRanges = kafkaRDD.asInstanceOf[HasOffsetRanges]
OffsetRangs = ranges.offsetRanges
//获取value,(key 默认是null,没有用)
val map: RDD[String] = kafkaRDD.map(._2)
map.foreach(x=>println(x+"==========================="))
//更新偏移量
for (o <- OffsetRangs){
//取出偏移量
val offset = o.untilOffset
//取出分区
val partition = o.partition
println("partition: "+partition)
println("offset: "+offset)
//把通过hset,把对应的partition和offset写入到redis中
conn.hset(gtKey, partition.toString, offset.toString)
}
})
ssc.start()
ssc.awaitTermination()
//Jedis连接池
def getConnection(): Jedis ={
//new 一个JedisPoolConfig,用来设定参数
val conf = new JedisPoolConfig()
val pool = new JedisPool(conf,“hadoop01”,6379)
//最大连接数
conf.setMaxTotal(20)
//最大空闲数
conf.setMaxIdle(20)
val jedis = pool.getResource()
//密码
jedis.auth("123")
jedis