caffe日志文件中Iteration loss和Train net output loss的区别
caffe训练日志文件中包含两个loss,一个是Iteration####, loss = ####;另一个是Train net output #0: loss = ####。
如下图所示
如果想要知道这两个loss的区别就需要找到输出该日志的代码。经查询可知,该部分的代码在solver.cpp中。
template <typename Dtype>
void Solver<Dtype>::Step(int iters) {
const int start_iter = iter_;
const int stop_iter = iter_ + iters;
int average_loss = this->param_.average_loss();
losses_.clear();
smoothed_loss_ = 0;
while (iter_ < stop_iter) {
// zero-init the params
net_->ClearParamDiffs();
if (param_.test_interval() && iter_ % param_.test_interval() == 0
&& (iter_ > 0 || param_.test_initialization())
&& Caffe::root_solver()) {
TestAll();
if (requested_early_exit_) {
// Break out of the while loop because stop was requested while testing.
break;
}
}
for (int i = 0; i < callbacks_.size(); ++i) {
callbacks_[i]->on_start();
}
const bool display = param_.display() && iter_ % param_.display() == 0;
net_->set_debug_info(display && param_.debug_info());
// accumulate the loss and gradient
Dtype loss = 0;
for (int i = 0; i < param_.iter_size(); ++i) {
loss += net_->ForwardBackward();
}
loss /= param_.iter_size();
// average the loss across iterations for smoothed reporting
UpdateSmoothedLoss(loss, start_iter, average_loss);
if (display) {
LOG_IF(INFO, Caffe::root_solver()) << "Iteration " << iter_
<< ", loss = " << smoothed_loss_;
const vector<Blob<Dtype>*>& result = net_->output_blobs();
int score_index = 0;
for (int j = 0; j < result.size(); ++j) {
const Dtype* result_vec = result[j]->cpu_data();
const string& output_name =
net_->blob_names()[net_->output_blob_indices()[j]];
const Dtype loss_weight =
net_->blob_loss_weights()[net_->output_blob_indices()[j]];
for (int k = 0; k < result[j]->count(); ++k) {
ostringstream loss_msg_stream;
if (loss_weight) {
loss_msg_stream << " (* " << loss_weight
<< " = " << loss_weight * result_vec[k] << " loss)";
}
LOG_IF(INFO, Caffe::root_solver()) << " Train net output #"
<< score_index++ << ": " << output_name << " = "
<< result_vec[k] << loss_msg_stream.str();
}
}
}
for (int i = 0; i < callbacks_.size(); ++i) {
callbacks_[i]->on_gradients_ready();
}
ApplyUpdate();
// Increment the internal iter_ counter -- its value should always indicate
// the number of times the weights have been updated.
++iter_;
SolverAction::Enum request = GetRequestedAction();
// Save a snapshot if needed.
if ((param_.snapshot()
&& iter_ % param_.snapshot() == 0
&& Caffe::root_solver()) ||
(request == SolverAction::SNAPSHOT)) {
Snapshot();
}
if (SolverAction::STOP == request) {
requested_early_exit_ = true;
// Break out of training loop.
break;
}
}
}
Iteration loss代码为:
Train net output loss代码为:
查看并分析源码可知。Step函数完成实际的逐步迭代优化过程。Iteration loss部分代表的是:更新输出的当前的average_loss个样本的平均loss。该值为smoothed_loss_
,该值是通过调用 UpdateSmoothedLoss(loss, start_iter, average_loss);
更新得到的。
template <typename Dtype>
void Solver<Dtype>::UpdateSmoothedLoss(Dtype loss, int start_iter,
int average_loss) {
if (losses_.size() < average_loss) {
losses_.push_back(loss);
int size = losses_.size();
smoothed_loss_ = (smoothed_loss_ * (size - 1) + loss) / size;
} else {
int idx = (iter_ - start_iter) % average_loss;
smoothed_loss_ += (loss - losses_[idx]) / average_loss;
losses_[idx] = loss;
}
}
Train net output loss代表的是每个输出的loss值。 输出的是loss_msg_stream。
ostringstream loss_msg_stream;
const Dtype mean_score = test_score[i] / param_.test_iter(test_net_id);
if (loss_weight) {
loss_msg_stream << " (* " << loss_weight
<< " = " << loss_weight * mean_score << " loss)";
}
LOG(INFO) << " Test net output #" << i << ": " << output_name << " = "
<< mean_score << loss_msg_stream.str();
为了更直观的理解Train net output loss,我们引入GoogLeNet网络的日志文件。
可以看到一共有三个output,并且对应不同的比例(0.3,0.3,1)。如果我们了解GoogLeNet网络结构就会知道它有三个loss,分别是loss1/loss1,loss2/loss1, loss3/loss3
总结:
Iteration loss代表的是:更新输出的当前的average_loss个样本的平均loss。
Train net output loss代表的是每个输出的loss值。
作者:GL3_24
来源:****
著作权归作者所有。转载请联系作者获得授权。