Mysql学习(二)-- 事务和锁
事务:
什么是数据库事务?
事务是一个不可分割的数据库操作序列,也是数据库并发控制的基本单位,其执行的结果必须使数据库从一种一致性状态变到另一种一致性状态。事务是逻辑上的一组操作,要么都执行,要么都不执行。
事务最经典也经常被拿出来说例子就是转账了。
假如小明要给小红转账1000元,这个转账会涉及到两个关键操作就是:将小明的余额减少1000元,将小红的余额增加1000元。万一在这两个操作之间突然出现错误比如银行系统崩溃,导致小明余额减少而小红的余额没有增加,这样就不对了。事务就是保证这两个关键操作要么都成功,要么都要失败。
事物的四大特性(ACID)
关系性数据库需要遵循ACID规则,具体内容如下:
- 原子性: 事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;
- 一致性: 执行事务前后,数据保持一致,多个事务对同一个数据读取的结果是相同的;
- 隔离性: 并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的;
- 持久性: 一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。
脏读,幻读,不可重复读
-
脏读:一个事务读取到另一个事务未提交的数据
例:比如银行取钱,事务A开启事务,此时切换到事务B,事务B开启事务–>取走100元,此时切换回事务A,事务A读取的肯定是数据库里面的原始数据,因为事务B取走了100块钱,并没有提交,数据库里面的账务余额肯定还是原始余额,这就是脏读。 -
不可重复读:一个事务的操作导致另一个事务前后两次读取到不同的数据(一个事务读取另一个事务已提交的数据)
例:以银行取钱为例,事务A开启事务–>查出银行卡余额为1000元,此时切换到事务B事务B开启事务–>事务B取走100元–>提交,数据库里面余额变为900元,此时切换回事务A,事务A再查一次查出账户余额为900元,这样对事务A而言,在同一个事务内两次读取账户余额数据不一致,这就是不可重复读。 - 虚读(幻读)一个事务的操作导致另一个事务前后两次查询的结果数据量不同。(一个事务读取到另一个事务已提交后添加的数据)
-
更新丢失:2个并发事务同时对一个结果修改,后提交的事务忽略了前一个事务对数据库的影响,造成了先提交的事务对数据库的影响丢失
例:比如学生信息,事务A开启事务–>修改所有学生当天签到状况为false,此时切换到事务B,事务B开启事务–>事务B插入了一条学生数据,此时切换回事务A,事务A提交的时候发现了一条自己没有修改过的数据,这就是幻读,就好像发生了幻觉一样。幻读出现的前提是并发的事务中有事务发生了插入、删除操作。
事务的隔离级别
为了达到事务的四大特性,数据库定义了4种不同的事务隔离级别,由低到高依次为Read uncommitted、Read committed、Repeatable read、Serializable,这四个级别可以逐个解决脏读、不可重复读、幻读这几类问题。
隔离级别 | 脏读 | 不可重复读 | 幻读 | 加锁读 |
---|---|---|---|---|
READ-UNCOMMITTED | √ | √ | √ | × |
READ-COMMITTED | × | √ | √ | × |
REPEATABLE-READ | × | × | √ | × |
SERIALIZABLE | × | × | × | √ |
- READ-UNCOMMITTED(读取未提交): 最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。
- READ-COMMITTED(读取已提交): 允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生。
- REPEATABLE-READ(可重复读): 对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。
- SERIALIZABLE(可串行化): 最高的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。
这里需要注意的是:Mysql 默认采用的 REPEATABLE_READ隔离级别, Oracle 默认采用的 READ_COMMITTED隔离级别
事务隔离机制的实现基于锁机制和并发调度。其中并发调度使用的是MVVC(多版本并发控制),通过保存修改的旧版本信息来支持并发一致性读和回滚等特性。
因为隔离级别越低,事务请求的锁越少,所以大部分数据库系统的隔离级别都是READ-COMMITTED(读取提交内容):,但是你要知道的是InnoDB 存储引擎默认使用 REPEATABLE-READ(可重读)并不会有任何性能损失。
InnoDB 存储引擎在 分布式事务 的情况下一般会用到SERIALIZABLE(可串行化)隔离级别。
锁
mysql锁概述
当数据库有并发事务的时候,可能会产生数据的不一致,这时候需要一些机制来保证访问的次序,锁机制就是这样的一个机制。
就像酒店的房间,如果大家随意进出,就会出现多人抢夺同一个房间的情况,而在房间上装上锁,申请到钥匙的人才可以入住并且将房间锁起来,其他人只有等他使用完毕才可以再次使用。
隔离级别与锁的关系
-
在Read Uncommitted级别下,读取数据不需要加共享锁,这样就不会跟被修改的数据上的排他锁冲突
-
在Read Committed级别下,读操作需要加共享锁,但是在语句执行完以后释放共享锁;
-
在Repeatable Read级别下,读操作需要加共享锁,但是在事务提交之前并不释放共享锁,也就是必须等待事务执行完毕以后才释放共享锁。
-
SERIALIZABLE 是限制性最强的隔离级别,因为该级别锁定整个范围的键,并一直持有锁,直到事务完成。
锁分类:(按粒度分)
在关系型数据库中,可以按照锁的粒度把数据库锁分为行级锁(INNODB引擎)、表级锁(MYISAM引擎)和页级锁(BDB引擎 )。
MyISAM采用表级锁(table-level locking)。
InnoDB支持行级锁(row-level locking)和表级锁,默认为行级锁
行级锁
行级锁是Mysql中锁定粒度最细的一种锁,表示只针对当前操作的行进行加锁。行级锁能大大减少数据库操作的冲突。其加锁粒度最小,但加锁的开销也最大。行级锁分为共享锁 和 排他锁。
特点:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。
实现方式:
- 共享锁:lock in share mode
select math from zje where math>60 lock in share mode
- 排他锁:for update
select math from zje where math >60 for update
注意:
- 行锁必须有索引才能实现,否则会自动锁全表,那么就不是行锁了
- 两个事务不能锁同一个索引
表级锁
表级锁是MySQL中锁定粒度最大的一种锁,表示对当前操作的整张表加锁,它实现简单,资源消耗较少,被大部分MySQL引擎支持。最常使用的MYISAM与INNODB都支持表级锁定。表级锁定分为表共享读锁(共享锁)与表独占写锁(排他锁)。
特点:开销小,加锁快;不会出现死锁;锁定粒度大,发出锁冲突的概率最高,并发度最低。
页级锁
页级锁是MySQL中锁定粒度介于行级锁和表级锁中间的一种锁。表级锁速度快,但冲突多,行级冲突少,但速度慢。所以取了折衷的页级,一次锁定相邻的一组记录。
特点:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般
锁分类(按类型分)
从锁的类别上来讲,有共享锁和排他锁。
共享锁:
又叫做读锁。 当用户要进行数据的读取时,对数据加上共享锁。共享锁可以同时加上多个。
排他锁:
又叫做写锁。 当用户要进行数据的写入时,对数据加上排他锁。排他锁只可以加一个,他和其他的排他锁,共享锁都相斥。
用上面的例子来说就是用户的行为有两种,一种是来看房,多个用户一起看房是可以接受的。 一种是真正的入住一晚,在这期间,无论是想入住的还是想看房的都不可以。
InnoDB存储引擎的锁的算法有三种
Record lock:单个行记录上的锁
Gap lock:间隙锁,锁定一个范围,不包括记录本身
Next-key lock:record+gap 锁定一个范围,包含记录本身
相关知识点:
innodb对于行的查询使用next-key lock
Next-locking keying为了解决Phantom Problem幻读问题
当查询的索引含有唯一属性时,将next-key lock降级为record key
Gap锁设计的目的是为了阻止多个事务将记录插入到同一范围内,而这会导致幻读问题的产生
有两种方式显式关闭gap锁:(除了外键约束和唯一性检查外,其余情况仅使用record lock) A. 将事务隔离级别设置为RC B. 将参数innodb_locks_unsafe_for_binlog设置为1
数据库死锁
死锁是指两个或多个事务在同一资源上相互占用,并请求锁定对方的资源,从而导致恶性循环的现象。
例如说两个事务,事务A锁住了15行,同时事务B锁住了610行,此时事务A请求锁住610行,就会阻塞直到事务B施放610行的锁,而随后事务B又请求锁住15行,事务B也阻塞直到事务A释放15行的锁。死锁发生时,会产生Deadlock错误。 锁是对表操作的,所以自然锁住全表的表锁就不会出现死锁。
常见的解决死锁的方法
- 如果不同程序会并发存取多个表,尽量约定以相同的顺序访问表,可以大大降低死锁机会。
- 在同一个事务中,尽可能做到一次锁定所需要的所有资源,减少死锁产生概率;
- 对于非常容易产生死锁的业务部分,可以尝试使用升级锁定颗粒度,通过表级锁定来减少死锁产生的概率;
如果业务处理不好可以用分布式事务锁或者使用乐观锁
乐观锁和悲观锁
数据库管理系统(DBMS)中的并发控制的任务是确保在多个事务同时存取数据库中同一数据时不破坏事务的隔离性和统一性以及数据库的统一性。乐观并发控制(乐观锁)和悲观并发控制(悲观锁)是并发控制主要采用的技术手段。
悲观锁:
假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。在查询完数据的时候就把事务锁起来,直到提交事务。
实现方式:使用数据库中的锁机制
乐观锁:
假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。在修改数据的时候把事务锁起来,通过version的方式来进行锁定。
实现方式:乐观锁一般会使用版本号机制或CAS算法实现
两种锁的使用场景
从上面对两种锁的介绍,我们知道两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下(多读场景),即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。
但如果是多写的情况,一般会经常产生冲突,这就会导致上层应用会不断的进行retry,这样反倒是降低了性能,所以一般多写的场景下用悲观锁就比较合适。
参考:
https://blog.****.net/ThinkWon/article/details/104778621