HIVE -- 基础介绍,建表介绍
1.hive的介绍
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能(HQL)。
其本质是将SQL转换为MapReduce的任务进行运算,底层由HDFS来提供数据的存储,hive可以理解为一个将SQL转换为MapReduce的任务的工具。
2.hive的特点
- 可扩展
Hive可以自由的扩展集群的规模,一般情况下不需要重启服务。
- 延展性
Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。
- 容错
良好的容错性,节点出现问题SQL仍可完成执行。
3.hive架构
用户接口:包括CLI、JDBC/ODBC、WebGUI。其中,CLI(command line interface)为shell命令行;JDBC/ODBC是Hive的JAVA实现,与传统数据库JDBC类似;WebGUI是通过浏览器访问Hive。
元数据存储:通常是存储在关系数据库如mysql/derby中。Hive 将元数据存储在数据库中。Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。
解释器、编译器、优化器、执行器:完成HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在HDFS 中,并在随后有MapReduce 调用执行。
4.hive与传统数据库对比
hive具有sql数据库的外表,但应用场景完全不同,hive只适合用来做批量数据统计分析
5.hive的数据存储
1、Hive中所有的数据都存储在 HDFS 中,没有专门的数据存储格式(可支持Text,SequenceFile,ParquetFile,ORC格式RCFILE等)
2、只需要在创建表的时候告诉 Hive 数据中的列分隔符和行分隔符,Hive 就可以解析数据。
3、Hive 中包含以下数据模型:DB、Table,External Table,Partition,Bucket。
db:在hdfs中表现为${hive.metastore.warehouse.dir}目录下一个文件夹
table:在hdfs中表现所属db目录下一个文件夹
external table:与table类似,不过其数据存放位置可以在任意指定路径
partition:在hdfs中表现为table目录下的子目录
bucket:在hdfs中表现为同一个表目录下根据hash散列之后的多个文件
6.hive的使用方法:
启动hiveserver2服务
前台启动
hive --service hiveserver2
后台启动
hive --service hiveserver2 &
beeline连接hiveserver2
bin/beeline
beeline> !connect jdbc:hive2://node01.hadoop.com:10000
7.建表
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]
说明:
1.CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXISTS 选项来忽略这个异常。
2.EXTERNAL关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive 创建内部表时,会将数据移动到数据仓库指向的路径;
3.若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。
4.LIKE 允许用户复制现有的表结构,但是不复制数据。
5.ROW FORMAT DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char] [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char] | SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]
用户在建表的时候可以自定义 SerDe 或者使用自带的 SerDe。如果没有指定 ROW FORMAT 或者 ROW FORMAT DELIMITED,将会使用自带的 SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的 SerDe,Hive通过 SerDe 确定表的具体的列的数据。
6.STORED AS
SEQUENCEFILE|TEXTFILE|RCFILE
如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCEFILE。
7.CLUSTERED BY
对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分。Hive也是 针对某一列进行桶的组织。Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。
把表(或者分区)组织成桶(Bucket)有两个理由:
(1)获得更高的查询处理效率。桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构。具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现。比如JOIN操作。对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量。
(2)使取样(sampling)更高效。在处理大规模数据集时,在开发和修改查询的阶段,如果能在数据集的一小部分数据上试运行查询,会带来很多方便。