Zookeeper工作原理+安装(windows环境下)
ZooKeeper是一个分布式应用程序协调服务,分布式应用程序可以基于它实现统一命名服务、状态同步服务、集群管理、分布式应用配置项的管理等。在分布式应用中,由于不能很好地使用锁机制,因此需要有一种可靠的、可扩展的、分布式的、可配置的协调机制来统一系统的状态。Zookeeper的目的就在于此。
简单的说,zookeeper=文件系统+通知机制。
1 Zookeeper的基本概念
1.1 角色
Zookeeper中的角色主要有以下三类,如下表所示:
系统模型如图所示:
1.2 设计目的
1.最终一致性:client不论连接到哪个Server,展示给它都是同一个视图,这是zookeeper最重要的性能。
2 .可靠性:如果消息m被到一台服务器接受,那么它将被所有的服务器接受。
3 .实时性:Zookeeper保证客户端将在一个时间间隔范围内获得服务器的更新信息,或者服务器失效的信息。
4 .等待无关(wait-free):慢的或者失效的client不得干预快速的client的请求,使得每个client都能有效的等待。
5.原子性:更新只能成功或者失败,没有中间状态。
6 .顺序性:包括全局有序和偏序两种:全局有序是指如果在一台服务器上消息a在消息b前发布,则在所有Server上消息a都将在消息b前被发布;偏序是指如果一个消息b在消息a后被同一个发送者发布,a必将排在b前面。
1.3 文件系统
Zookeeper维护一个类似文件系统的数据结构:
每个子目录项如 NameService 都被称作为 znode,和文件系统一样,我们能够自由的增加、删除znode,在一个znode下增加、删除子znode,唯一的不同在于znode是可以存储数据的。
有四种类型的znode:
1、PERSISTENT-持久化目录节点:客户端与zookeeper断开连接后,该节点依旧存在
2、 PERSISTENT_SEQUENTIAL-持久化顺序编号目录节点
3、EPHEMERAL-临时目录节点:客户端与zookeeper断开连接后,该节点被删除
4、EPHEMERAL_SEQUENTIAL-临时顺序编号目录节点
1.4 Zookeeper能做什么?
1、 命名服务
这个似乎最简单,在zookeeper的文件系统里创建一个目录,即有唯一的path。在我们使用tborg无法确定上游程序的部署机器时即可与下游程序约定好path,通过path即能互相探索发现,不见不散了。
2、 配置管理
程序总是需要配置的,如果程序分散部署在多台机器上,要逐个改变配置就变得困难。好吧,现在把这些配置全部放到zookeeper上去,保存在 Zookeeper 的某个目录节点中,然后所有相关应用程序对这个目录节点进行监听,一旦配置信息发生变化,每个应用程序就会收到 Zookeeper 的通知,然后从 Zookeeper 获取新的配置信息应用到系统中就好。
所谓集群管理无在乎两点:是否有机器退出和加入、选举master。
对于第一点,所有机器约定在父目录GroupMembers下创建临时目录节点,然后监听父目录节点的子节点变化消息。一旦有机器挂掉,该机器与 zookeeper的连接断开,其所创建的临时目录节点被删除,所有其他机器都收到通知:某个兄弟目录被删除,于是,所有人都知道:它上船了。新机器加入 也是类似,所有机器收到通知:新兄弟目录加入,highcount又有了。
对于第二点,我们稍微改变一下,所有机器创建临时顺序编号目录节点,每次选取编号最小的机器作为master就好。
4、 分布式锁
有了zookeeper的一致性文件系统,锁的问题变得容易。锁服务可以分为两类,一个是保持独占,另一个是控制时序。
对于第一类,我们将zookeeper上的一个znode看作是一把锁,通过createznode的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。厕所有言:来也冲冲,去也冲冲,用完删除掉自己创建的distribute_lock 节点就释放出锁。
对于第二类, /distribute_lock 已经预先存在,所有客户端在它下面创建临时顺序编号目录节点,和选master一样,编号最小的获得锁,用完删除,依次方便。
具体步骤
1、创建一个永久性节点,作锁的根目录
2、当要获取一个锁时,在锁目录下创建一个临时有序列的节点
3、检查锁目录的子节点是否有序列比它小,若有则监听比它小的上一个节点,当前锁处于等待状态
4、当等待时间超过Zookeeper session的连接时间(sessionTimeout)时,当前session过期,Zookeeper自动删除此session创建的临时节点,等待状态结束,获取锁失败
5、当监听器触发时,等待状态结束,获得锁
1.5 Zookeeper的数据复制
从客户端读写访问的透明度来看,数据复制集群系统分下面两种:
1、写主(WriteMaster)
对数据的修改提交给指定的节点。读无此限制,可以读取任何一个节点。这种情况下客户端需要对读与写进行区别,俗称读写分离;
2、写任意(Write Any)
对数据的修改可提交给任意的节点,跟读一样。这种情况下,客户端对集群节点的角色与变化透明。
对zookeeper来说,它采用的方式是写任意。通过增加机器,它的读吞吐能力和响应能力扩展性非常好,而写,随着机器的增多吞吐能力肯定下降(这 也是它建立observer的原因),而响应能力则取决于具体实现方式,是延迟复制保持最终一致性,还是立即复制快速响应。
我们关注的重点还是在如何保证数据在集群所有机器的一致性,这就涉及到paxos算法。
1.6 Zookeeper的paxos算法
数据一致性与paxos算法
据说Paxos算法的难理解与算法的知名度一样令人敬仰,所以我们先看如何保持数据的一致性,这里有个原则就是:
在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点都执行相同的操作序列,那么他们最后能得到一个一致的状态。
Paxos算法解决的什么问题呢,解决的就是保证每个节点执行相同的操作序列。好吧,这还不简单,master维护一个全局写队列,所有写操作都必须 放入这个队列编号,那么无论我们写多少个节点,只要写操作是按编号来的,就能保证一致性。没错,就是这样,可是如果master挂了呢。
Paxos算法通过投票来对写操作进行全局编号,同一时刻,只有一个写操作被批准,同时并发的写操作要去争取选票,只有获得过半数选票的写操作才会被 批准(所以永远只会有一个写操作得到批准),其他的写操作竞争失败只好再发起一轮投票,就这样,在日复一日年复一年的投票中,所有写操作都被严格编号排 序。编号严格递增,当一个节点接受了一个编号为100的写操作,之后又接受到编号为99的写操作(因为网络延迟等很多不可预见原因),它马上能意识到自己 数据不一致了,自动停止对外服务并重启同步过程。任何一个节点挂掉都不会影响整个集群的数据一致性(总2n+1台,除非挂掉大于n台)。
2 ZooKeeper的工作原理
Zookeeper的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。
为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上了zxid。实现中zxid是一个64位的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个新的epoch,标识当前属于那个leader的统治时期。低32位用于递增计数。
每个Server在工作过程中有三种状态:
LOOKING:当前Server不知道leader是谁,正在搜寻
LEADING:当前Server即为选举出来的leader
FOLLOWING:leader已经选举出来,当前Server与之同步
2.1 选主流程
当leader崩溃或者leader失去大多数的follower,这时候zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的Server都恢复到一个正确的状态。Zk的选举算法有两种:一种是基于basic paxos实现的,另外一种是基于fast paxos算法实现的。系统默认的选举算法为fast paxos。
fast paxos流程是在选举过程中,某Server首先向所有Server提议自己要成为leader,当其它Server收到提议以后,解决epoch和zxid的冲突,并接受对方的提议,然后向对方发送接受提议完成的消息,重复这个流程,最后一定能选举出Leader。其流程图如下所示:
2.2 同步流程
选完leader以后,zk就进入状态同步过程。
1. leader等待server连接;
2 .Follower连接leader,将最大的zxid发送给leader;
3 .Leader根据follower的zxid确定同步点;
4 .完成同步后通知follower 已经成为uptodate状态;
5 .Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。
流程图如下所示:
2.3 工作流程
2.3.1 Leader工作流程
Leader主要有三个功能:
1 .恢复数据;
2 .维持与Learner的心跳,接收Learner请求并判断Learner的请求消息类型;
3 .Learner的消息类型主要有PING消息、REQUEST消息、ACK消息、REVALIDATE消息,根据不同的消息类型,进行不同的处理。
PING消息是指Learner的心跳信息;
REQUEST消息是Follower发送的提议信息,包括写请求及同步请求;
ACK消息是Follower的对提议的回复,超过半数的Follower通过,则commit该提议;
REVALIDATE消息是用来延长SESSION有效时间。
Leader的工作流程简图如下所示,在实际实现中,流程要比下图复杂得多,启动了三个线程来实现功能。
2.3.2 Follower工作流程
Follower主要有四个功能:
1. 向Leader发送请求(PING消息、REQUEST消息、ACK消息、REVALIDATE消息);
2 .接收Leader消息并进行处理;
3 .接收Client的请求,如果为写请求,发送给Leader进行投票;
4 .返回Client结果。
Follower的消息循环处理如下几种来自Leader的消息:
1 .PING消息: 心跳消息;
2 .PROPOSAL消息:Leader发起的提案,要求Follower投票;
3 .COMMIT消息:服务器端最新一次提案的信息;
4 .UPTODATE消息:表明同步完成;
5 .REVALIDATE消息:根据Leader的REVALIDATE结果,关闭待revalidate的session还是允许其接受消息;
6 .SYNC消息:返回SYNC结果到客户端,这个消息最初由客户端发起,用来强制得到最新的更新。
Follower的工作流程简图如下所示,在实际实现中,Follower是通过5个线程来实现功能的。
对于observer的流程不再叙述,observer流程和Follower的唯一不同的地方就是observer不会参加leader发起的投票。
3 ZooKeeper的安装(windows环境下)
zk工具下载 链接:https://pan.baidu.com/s/1jdT1mHa0R8ARXHzWYxZQ4A 密码:4p9v修改完配置文件之后我们双击启动zookeeper的zkServer.cmd
启动zk的客户端 进入F:\kaifa\ZK\ZooInspector\build 输入命令 java -jar zookeeper-dev-ZooInspector.jar
Zookeeper的主流应用场景实现思路(除去官方示例)
(1)配置管理
集中式的配置管理在应用集群中是非常常见的,一般商业公司内部都会实现一套集中的配置管理中心,应对不同的应用集群对于共享各自配置的需求,并且在配置变更时能够通知到集群中的每一个机器。
Zookeeper很容易实现这种集中式的配置管理,比如将APP1的所有配置配置到/APP1 znode下,APP1所有机器一启动就对/APP1这个节点进行监控(zk.exist("/APP1",true)),并且实现回调方法Watcher,那么在zookeeper上/APP1 znode节点下数据发生变化的时候,每个机器都会收到通知,Watcher方法将会被执行,那么应用再取下数据即可(zk.getData("/APP1",false,null));
以上这个例子只是简单的粗颗粒度配置监控,细颗粒度的数据可以进行分层级监控,这一切都是可以设计和控制的。
(2)集群管理
应用集群中,我们常常需要让每一个机器知道集群中(或依赖的其他某一个集群)哪些机器是活着的,并且在集群机器因为宕机,网络断链等原因能够不在人工介入的情况下迅速通知到每一个机器。
Zookeeper同样很容易实现这个功能,比如我在zookeeper服务器端有一个znode叫/APP1SERVERS,那么集群中每一个机器启动的时候都去这个节点下创建一个EPHEMERAL类型的节点,比如server1创建/APP1SERVERS/SERVER1(可以使用ip,保证不重复),server2创建/APP1SERVERS/SERVER2,然后SERVER1和SERVER2都watch /APP1SERVERS这个父节点,那么也就是这个父节点下数据或者子节点变化都会通知对该节点进行watch的客户端。因为EPHEMERAL类型节点有一个很重要的特性,就是客户端和服务器端连接断掉或者session过期就会使节点消失,那么在某一个机器挂掉或者断链的时候,其对应的节点就会消失,然后集群中所有对/APP1SERVERS进行watch的客户端都会收到通知,然后取得最新列表即可。
另外有一个应用场景就是集群选master,一旦master挂掉能够马上能从slave中选出一个master,实现步骤和前者一样,只是机器在启动的时候在APP1SERVERS创建的节点类型变为EPHEMERAL_SEQUENTIAL类型,这样每个节点会自动被编号
我们默认规定编号最小的为master,所以当我们对/APP1SERVERS节点做监控的时候,得到服务器列表,只要所有集群机器逻辑认为最小编号节点为master,那么master就被选出,而这个master宕机的时候,相应的znode会消失,然后新的服务器列表就被推送到客户端,然后每个节点逻辑认为最小编号节点为master,这样就做到动态master选举。
Zookeeper 监视(Watches) 简介
Zookeeper C API 的声明和描述在 include/zookeeper.h 中可以找到,另外大部分的 Zookeeper C API 常量、结构体声明也在 zookeeper.h 中,如果如果你在使用 C API 是遇到不明白的地方,最好看看 zookeeper.h,或者自己使用 doxygen 生成 Zookeeper C API 的帮助文档。
Zookeeper 中最有特色且最不容易理解的是监视(Watches)。Zookeeper 所有的读操作——getData(), getChildren(), 和 exists() 都 可以设置监视(watch),监视事件可以理解为一次性的触发器, 官方定义如下: a watch event is one-time trigger, sent to the client that set the watch, which occurs when the data for which the watch was set changes。对此需要作出如下理解:
-
(一次性触发)One-time trigger
当设置监视的数据发生改变时,该监视事件会被发送到客户端,例如,如果客户端调用了 getData("/znode1", true) 并且稍后 /znode1 节点上的数据发生了改变或者被删除了,客户端将会获取到 /znode1 发生变化的监视事件,而如果 /znode1 再一次发生了变化,除非客户端再次对 /znode1 设置监视,否则客户端不会收到事件通知。
-
(发送至客户端)Sent to the client
Zookeeper 客户端和服务端是通过 socket 进行通信的,由于网络存在故障,所以监视事件很有可能不会成功地到达客户端,监视事件是异步发送至监视者的,Zookeeper 本身提供了保序性(ordering guarantee):即客户端只有首先看到了监视事件后,才会感知到它所设置监视的 znode 发生了变化(a client will never see a change for which it has set a watch until it first sees the watch event). 网络延迟或者其他因素可能导致不同的客户端在不同的时刻感知某一监视事件,但是不同的客户端所看到的一切具有一致的顺序。
-
(被设置 watch 的数据)The data for which the watch was set
这意味着 znode 节点本身具有不同的改变方式。你也可以想象 Zookeeper 维护了两条监视链表:数据监视和子节点监视(data watches and child watches) getData() and exists() 设置数据监视,getChildren() 设置子节点监视。 或者,你也可以想象 Zookeeper 设置的不同监视返回不同的数据,getData() 和 exists() 返回 znode 节点的相关信息,而 getChildren() 返回子节点列表。因此, setData() 会触发设置在某一节点上所设置的数据监视(假定数据设置成功),而一次成功的 create() 操作则会出发当前节点上所设置的数据监视以及父节点的子节点监视。一次成功的 delete() 操作将会触发当前节点的数据监视和子节点监视事件,同时也会触发该节点父节点的child watch。
Zookeeper 中的监视是轻量级的,因此容易设置、维护和分发。当客户端与 Zookeeper 服务器端失去联系时,客户端并不会收到监视事件的通知,只有当客户端重新连接后,若在必要的情况下,以前注册的监视会重新被注册并触发,对于开发人员来说 这通常是透明的。只有一种情况会导致监视事件的丢失,即:通过 exists() 设置了某个 znode 节点的监视,但是如果某个客户端在此 znode 节点被创建和删除的时间间隔内与 zookeeper 服务器失去了联系,该客户端即使稍后重新连接 zookeeper服务器后也得不到事件通知。
Zookeeper C API 常量与部分结构(struct)介绍
与 ACL 相关的结构与常量:
struct Id 结构为:
struct Id { char * scheme; char * id; };
struct ACL 结构为:
struct ACL { int32_t perms; struct Id id; };
struct ACL_vector 结构为:
struct ACL_vector { int32_t count; struct ACL *data; };
与 znode 访问权限有关的常量
const int ZOO_PERM_READ; //允许客户端读取 znode 节点的值以及子节点列表。
const int ZOO_PERM_WRITE;// 允许客户端设置 znode 节点的值。
const int ZOO_PERM_CREATE; //允许客户端在该 znode 节点下创建子节点。
const int ZOO_PERM_DELETE;//允许客户端删除子节点。
const int ZOO_PERM_ADMIN; //允许客户端执行 set_acl()。
const int ZOO_PERM_ALL;//允许客户端执行所有操作,等价与上述所有标志的或(OR) 。
与 ACL IDs 相关的常量
struct Id ZOO_ANYONE_ID_UNSAFE; //(‘world’,’anyone’)
struct Id ZOO_AUTH_IDS;// (‘auth’,’’)
三种标准的 ACL
struct ACL_vector ZOO_OPEN_ACL_UNSAFE; //(ZOO_PERM_ALL,ZOO_ANYONE_ID_UNSAFE)
struct ACL_vector ZOO_READ_ACL_UNSAFE;// (ZOO_PERM_READ, ZOO_ANYONE_ID_UNSAFE)
struct ACL_vector ZOO_CREATOR_ALL_ACL; //(ZOO_PERM_ALL,ZOO_AUTH_IDS)
与 Interest 相关的常量:ZOOKEEPER_WRITE, ZOOKEEPER_READ
这 两个常量用于标识感兴趣的事件并通知 zookeeper 发生了哪些事件。Interest 常量可以进行组合或(OR)来标识多种兴趣(multiple interests: write, read),这两个常量一般用于 zookeeper_interest() 和 zookeeper_process()两个函数中。
与节点创建相关的常量:ZOO_EPHEMERAL, ZOO_SEQUENCE
zoo_create 函数标志,ZOO_EPHEMERAL 用来标识创建临时节点,ZOO_SEQUENCE 用来标识节点命名具有递增的后缀序号(一般是节点名称后填充 10 位字符的序号,如 /xyz0000000000, /xyz0000000001, /xyz0000000002, ...),同样地,ZOO_EPHEMERAL, ZOO_SEQUENCE 可以组合。
与连接状态 Stat 相关的常量
以下常量均与 Zookeeper 连接状态有关,他们通常用作监视器回调函数的参数。
ZOOAPI const int | ZOO_EXPIRED_SESSION_STATE |
ZOOAPI const int | ZOO_AUTH_FAILED_STATE |
ZOOAPI const int | ZOO_CONNECTING_STATE |
ZOOAPI const int | ZOO_ASSOCIATING_STATE |
ZOOAPI const int | ZOO_CONNECTED_STATE |
与监视类型(Watch Types)相关的常量
以下常量标识监视事件的类型,他们通常用作监视器回调函数的第一个参数。
ZOO_DELETED_EVENT; // 节点被删除,通过 zoo_exists() 和 zoo_get() 设置监视。
ZOO_CHANGED_EVENT; // 节点发生变化,通过 zoo_exists() 和 zoo_get() 设置监视。
ZOO_CHILD_EVENT; // 子节点事件,通过zoo_get_children() 和 zoo_get_children2()设置监视。
Zookeeper C API 错误码介绍 ZOO_ERRORS
ZOK | 正常返回 |
ZSYSTEMERROR | 系统或服务器端错误(System and server-side errors),服务器不会抛出该错误,该错误也只是用来标识错误范围的,即大于该错误值,且小于 ZAPIERROR 都是系统错误。 |
ZRUNTIMEINCONSISTENCY | 运行时非一致性错误。 |
ZDATAINCONSISTENCY | 数据非一致性错误。 |
ZCONNECTIONLOSS | Zookeeper 客户端与服务器端失去连接 |
ZMARSHALLINGERROR | 在 marshalling 和 unmarshalling 数据时出现错误(Error while marshalling or unmarshalling data) |
ZUNIMPLEMENTED | 该操作未实现(Operation is unimplemented) |
ZOPERATIONTIMEOUT | 该操作超时(Operation timeout) |
ZBADARGUMENTS | 非法参数错误(Invalid arguments) |
ZINVALIDSTATE | 非法句柄状态(Invliad zhandle state) |
ZAPIERROR | API 错误(API errors),服务器不会抛出该错误,该错误也只是用来标识错误范围的,错误值大于该值的标识 API 错误,而小于该值的标识 ZSYSTEMERROR。 |
ZNONODE | 节点不存在(Node does not exist) |
ZNOAUTH | 没有经过授权(Not authenticated) |
ZBADVERSION | 版本冲突(Version conflict) |
ZNOCHILDRENFOREPHEMERALS | 临时节点不能拥有子节点(Ephemeral nodes may not have children) |
ZNODEEXISTS | 节点已经存在(The node already exists) |
ZNOTEMPTY | 该节点具有自身的子节点(The node has children) |
ZSESSIONEXPIRED | 会话过期(The session has been expired by the server) |
ZINVALIDCALLBACK | 非法的回调函数(Invalid callback specified) |
ZINVALIDACL | 非法的ACL(Invalid ACL specified) |
ZAUTHFAILED | 客户端授权失败(Client authentication failed) |
ZCLOSING | Zookeeper 连接关闭(ZooKeeper is closing) |
ZNOTHING | 并非错误,客户端不需要处理服务器的响应(not error, no server responses to process) |
ZSESSIONMOVED | 会话转移至其他服务器,所以操作被忽略(session moved to another server, so operation is ignored) |
Watch事件类型:
ZOO_CREATED_EVENT:节点创建事件,需要watch一个不存在的节点,当节点被创建时触发,此watch通过zoo_exists()设置
ZOO_DELETED_EVENT:节点删除事件,此watch通过zoo_exists()或zoo_get()设置
ZOO_CHANGED_EVENT:节点数据改变事件,此watch通过zoo_exists()或zoo_get()设置
ZOO_CHILD_EVENT:子节点列表改变事件,此watch通过zoo_get_children()或zoo_get_children2()设置
ZOO_SESSION_EVENT:会话失效事件,客户端与服务端断开或重连时触发
ZOO_NOTWATCHING_EVENT:watch移除事件,服务端出于某些原因不再为客户端watch节点时触发