[笔记2]动手学深度学习

资料来源:伯禹学习平台。

概念整理

K折交叉验证

由于验证数据集不参与模型训练,当训练数据不够用时,预留大量的验证数据显得太奢侈。一种改善的方法是K折交叉验证(K-fold cross-validation)。在K折交叉验证中,我们把原始训练数据集分割成K个不重合的子数据集,然后我们做K次模型训练和验证。每一次,我们使用一个子数据集验证模型,并使用其他K-1个子数据集来训练模型。在这K次训练和验证中,每次用来验证模型的子数据集都不同。最后,我们对这K次训练误差和验证误差分别求平均。

L2 范数正则化(regularization)

L2L2范数正则化在模型原损失函数基础上添加L2L2范数惩罚项,从而得到训练所需要最小化的函数。L2L2范数惩罚项指的是模型权重参数每个元素的平方和与一个正的常数的乘积。以线性回归中的线性回归损失函数为例

[笔记2]动手学深度学习

二维互相关运算

二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。

[笔记2]动手学深度学习

使用互相关运算与使用卷积运算并无本质区别。

特征图与感受野

二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素xx的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做xx的感受野(receptive field)。

1x1卷积层

1×1卷积核可在不改变高宽的情况下,调整通道数。1×1卷积核不识别高和宽维度上相邻元素构成的模式,其主要计算发生在通道维上。假设我们将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么1×1卷积层的作用与全连接层等价。

卷积层与全连接层的对比

使用全连接层的局限性:

  • 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。
  • 对于大尺寸的输入图像,使用全连接层容易导致模型过大。

使用卷积层的优势:

  • 卷积层保留输入形状。
  • 卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。

机器翻译(MT)

机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。

CV相关网络

LeNet 模型

[笔记2]动手学深度学习

卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的平均池化层则用来降低卷积层对位置的敏感性。

卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用5×55×5的窗口,并在输出上使用sigmoid**函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。

全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。

AlexNet

特征:

  1. 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
  2. 将sigmoid**函数改成了更加简单的ReLU**函数。
  3. 用Dropout来控制全连接层的模型复杂度。
  4. 引入数据增强,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。

[笔记2]动手学深度学习

VGG

通过重复使⽤简单的基础块来构建深度模型。

Block:数个相同的填充为1、窗口形状为3×3的卷积层,接上一个步幅为2、窗口形状为2×2的最大池化层。
卷积层保持输入的高和宽不变,而池化层则对其减半。

[笔记2]动手学深度学习

NiN

NiN:串联多个由卷积层和“全连接”层构成的小⽹络来构建⼀个深层⽹络。
⽤了输出通道数等于标签类别数的NiN块,然后使⽤全局平均池化层对每个通道中所有元素求平均并直接⽤于分类。

[笔记2]动手学深度学习

1×1卷积核作用
1.放缩通道数:通过控制卷积核的数量达到通道数的放缩。
2.增加非线性。1×1卷积核的卷积过程相当于全连接层的计算过程,并且还加入了非线性**函数,从而可以增加网络的非线性。
3.计算参数少

GoogLeNet

  1. 由Inception基础块组成。
  2. Inception块相当于⼀个有4条线路的⼦⽹络。它通过不同窗口形状的卷积层和最⼤池化层来并⾏抽取信息,并使⽤1×1卷积层减少通道数从而降低模型复杂度。
  3. 可以⾃定义的超参数是每个层的输出通道数,我们以此来控制模型复杂度。

[笔记2]动手学深度学习

[笔记2]动手学深度学习

NLP相关网络

Encoder-Decoder

[笔记2]动手学深度学习

Sequence to Sequence

[笔记2]动手学深度学习

训练:

[笔记2]动手学深度学习

测试:

[笔记2]动手学深度学习

Beam Search

[笔记2]动手学深度学习

维特比算法:选择整体分数最高的句子(搜索空间太大) 集束搜索:

[笔记2]动手学深度学习

注意力机制

[笔记2]动手学深度学习

引入注意力机制的Seq2seq模型

[笔记2]动手学深度学习

[笔记2]动手学深度学习

Transformer

利用attention机制实现了并行化捕捉序列依赖,并且同时处理序列的每个位置的tokens,上述优势使得Transformer模型在性能优异的同时大大减少了训练时间。

[笔记2]动手学深度学习

对于transformer,细节还有还有很多没弄懂的地方,有待补充。