标准差 方差 协方差 相关系数
一、统计学的基本概念
统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述:
均值描述的是样本集合的中间点,它告诉我们的信息是有限的,而标准差给我们描述的是样本集合的各个样本点到均值的距离之平均。
以这两个集合为例,[0, 8, 12, 20]和[8, 9, 11, 12],两个集合的均值都是10,但显然两个集合的差别是很大的,计算两者的标准差,前者是8.3后者是1.8,显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。之所以除以n-1而不是n,是因为这样能使我们以较小的样本集更好地逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方。
二、为什么需要协方差
标准差和方差一般是用来描述一维数据的,但现实生活中我们常常会遇到含有多维数据的数据集,最简单的是大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多,比如,一个男孩子的猥琐程度跟他受女孩子的欢迎程度是否存在一些联系。协方差就是这样一种用来度量两个随机变量关系的统计量,我们可以仿照方差的定义:
来度量各个维度偏离其均值的程度,协方差可以这样来定义:
协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义),也就是说一个人越猥琐越受女孩欢迎。如果结果为负值, 就说明两者是负相关,越猥琐女孩子越讨厌。如果为0,则两者之间没有关系,猥琐不猥琐和女孩子喜不喜欢之间没有关联,就是统计上说的“相互独立”。
从协方差的定义上我们也可以看出一些显而易见的性质,如:
三、协方差矩阵
前面提到的猥琐和受欢迎的问题是典型的二维问题,而协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,比如n维的数据集就需要计算个协方差,那自然而然我们会想到使用矩阵来组织这些数据。给出协方差矩阵的定义:
这个定义还是很容易理解的,我们可以举一个三维的例子,假设数据集有三个维度,则协方差矩阵为:
可见,协方差矩阵是一个对称的矩阵,而且对角线是各个维度的方差。
四、相关系数
对于相关系数,我们从它的公式入手。一般情况下,相关系数的公式为:
翻译一下:就是用X、Y的协方差除以X的标准差和Y的标准差。
所以,相关系数也可以看成协方差:一种剔除了两个变量量纲影响、标准化后的特殊协方差。
既然是一种特殊的协方差,那它:
1、也可以反映两个变量变化时是同向还是反向,如果同向变化就为正,反向变化就为负。
2、由于它是标准化后的协方差,因此更重要的特性来了:它消除了两个变量变化幅度的影响,而只是单纯反应两个变量每单位变化时的相似程度。
比较抽象,下面还是举个例子来说明:
首先,还是承接上文中的变量X、Y变化的示意图(X为红点,Y为绿点),来看两种情况:
很容易就可以看出以上两种情况X,Y都是同向变化的,而这个“同向变化”,有个非常显著特征:X、Y同向变化的过程,具有极高的相似度!无论第一还是第二种情况下,都是:t1时刻X、Y都大于均值,t2时刻X、Y都变小且小于均值,t3时刻X、Y继续变小且小于均值,t4时刻X、Y变大但仍小于均值,t5时刻X、Y变大且大于均值……
可是,计算一下他们的协方差,
第一种情况下:
第二种情况下:
协方差差出了一万倍,只能从两个协方差都是正数判断出两种情况下X、Y都是同向变化,但是,一点也看不出两种情况下X、Y的变化都具有相似性这一特点。
这是为什么呢?
因为以上两种情况下,在X、Y两个变量同向变化时,X变化的幅度不同,这样,两种情况的协方差更多的被变量的变化幅度所影响了。
所以,为了能准确的研究两个变量在变化过程中的相似程度,我们就要把变化幅度对协方差的影响,从协方差中剔除掉。于是,相关系数就横空出世了,就有了最开始相关系数的公式:
那么为什么要通过除以标准差的方式来剔除变化幅度的影响呢?咱们简单从标准差公式看一下:
从公式可以看出,标准差计算方法为,每一时刻变量值与变量均值之差再平方,求得一个数值,再将每一时刻这个数值相加后求平均,再开方。
“变量值与变量均值之差”是什么呢?就是偏离均值的幅度:
那为何要对它做平方呢?因为有时候变量值与均值是反向偏离的(见下图),是个负数,平方后,就可以把负号消除了。这样在后面求平均时,每一项数值才不会被正负抵消掉,最后求出的平均值才能更好的体现出每次变化偏离均值的情况。
当然,最后求出平均值后并没有结束,因为刚才为了消除负号,把进行了平方,那最后肯定要把求出的均值开方,将这个偏离均值的幅度还原回原来的量级。于是就有了下面标准差的公式:
所以标准差描述了变量在整体变化过程中偏离均值的幅度。协方差除以标准差,也就是把协方差中变量变化幅度对协方差的影响剔除掉,这样协方差也就标准化了,它反应的就是两个变量每单位变化时的情况。这也就是相关系数的公式含义了。
同时,你可以反过来想象一下:既然相关系数是协方差除以标准差,那么,当X或Y的波动幅度变大的时候,它们的协方差会变大,标准差也会变大,这样相关系数的分子分母都变大,其实变大的趋势会被抵消掉,变小时也亦然。于是,很明显的,相关系数不像协方差一样可以在+到-
间变化,它只能在+1到-1之间变化(相关系数的取值范围在+1到-1之间变化可以通过施瓦茨不等式来证明,有些复杂,这里就不赘述了,有兴趣的可以google下)。
总结一下,对于两个变量X、Y,
当他们的相关系数为1时,说明两个变量变化时的正向相似度最大,即,你变大一倍,我也变大一倍;你变小一倍,我也变小一倍。也即是完全正相关(以X、Y为横纵坐标轴,可以画出一条斜率为正数的直线,所以X、Y是线性关系的)。
随着他们相关系数减小,两个变量变化时的相似度也变小,当相关系数为0时,两个变量的变化过程没有任何相似度,也即两个变量无关。
当相关系数继续变小,小于0时,两个变量开始出现反向的相似度,随着相关系数继续变小,反向相似度会逐渐变大。
当相关系数为-1时,说明两个变量变化的反向相似度最大,即,你变大一倍,我变小一倍;你变小一倍,我变大一倍。也即是完全负相关(以X、Y为横纵坐标轴,可以画出一条斜率为负数的直线,所以X、Y也是线性关系的)。
有了上面的背景,我们再回到最初的变量X、Y的例子中,可以先看一下第一种情况的相关系数:
X的标准差为
Y的标准差为
于是相关系数为
说明第一种情况下,X的变化与Y的变化具有很高的相似度,而且已经接近完全正相关了,X、Y几乎就是线性变化的。
那第二种情况呢?
X的标准差为
Y的标准差为
于是相关系数为
说明第二种情况下,虽然X的变化幅度比第一种情况X的变化幅度小了10000倍,但是丝毫没有改变“X的变化与Y的变化具有很高的相似度”这一结论。同时,由于第一种、第二种情况的相关系数是相等的,因此在这两种情况下,X、Y的变化过程有着同样的相似度。
参考文献:https://www.cnblogs.com/eczhou/p/5434996.html