【论文阅读】深度学习去雾2——去雾网络的Loss和超参数整理


Towards Perceptual Image Dehazing by Physics-Based Disentanglement and Adversarial Training

【论文阅读】深度学习去雾2——去雾网络的Loss和超参数整理

  • 重建Loss,L1
    Lrecon(GJ,Gt,GA)=EIIII^1 \mathcal{L}_{r e c o n}\left(G_{J}, G_{t}, G_{A}\right)=\mathbb{E}_{I \sim \mathcal{I}}\|I-\hat{I}\|_{1}

  • GAN Loss,多尺度Discrimiation均值
    LGAN(G,D)=EJJ[logD(J)]+EII[log(1D(G(I)))] \mathcal{L}_{G A N}(G, D)=\mathbb{E}_{J \sim \mathcal{J}}[\log D(J)]+\mathbb{E}_{I \sim \mathcal{I}}[\log (1-D(G(I)))]

    Ladv(GJ,D)=12(LGAN(GJ,Dloc)+LGAN(GJ,Dglo)) \mathcal{L}_{a d v}\left(G_{J}, D\right)=\frac{1}{2}\left(\mathcal{L}_{G A N}\left(G_{J}, D^{l o c}\right)+\mathcal{L}_{G A N}\left(G_{J}, D^{g l o}\right)\right)

  • 正则Loss,TV Loss
    Lreg(Gt)=TV(t)=i,jti+1,jti,j+ti,j+1ti,j \mathcal{L}_{r e g}\left(G_{t}\right)=T V(t)=\sum_{i, j}\left|t_{i+1, j}-t_{i, j}\right|+\left|t_{i, j+1}-t_{i, j}\right|

  • 总Loss
    L(GJ,Gt,GA,D)=Ladv(GJ,D)+λLrecon(GJ,Gt,GA)+γLreg(Gt) \begin{array}{r}{\mathcal{L}\left(G_{J}, G_{t}, G_{A}, D\right)=\mathcal{L}_{a d v}\left(G_{J}, D\right) +\lambda \mathcal{L}_{r e c o n}\left(G_{J}, G_{t}, G_{A}\right)+\gamma \mathcal{L}_{r e g}\left(G_{t}\right)}\end{array}

权重未知


Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing

【论文阅读】深度学习去雾2——去雾网络的Loss和超参数整理

  • Perceptual Loss(VGG16 feature extractor from 2nd and 5th pooling layers)

    LPerceptual=ϕ(x)ϕ(F(G(x)))22+ϕ(y)ϕ(G(F(y)))22 \begin{aligned} \mathcal{L}_{\text {Perceptual}} &=\|\phi(x)-\phi(F(G(x)))\|_{2}^{2}+\|\phi(y)-\phi(G(F(y)))\|_{2}^{2} \end{aligned}

  • GAN Loss

  • 总Loss
    L(G,F,Dx,Dy)=LCycleGAN(G,F,Dx,Dy)+γLPerceptual(G,F) \begin{aligned} \mathcal{L}\left(G, F, D_{x}, D_{y}\right) &=\mathcal{L}_{C y c l e G A N}\left(G, F, D_{x}, D_{y}\right) +\gamma * \mathcal{L}_{P e r c e p t u a l}(G, F) \end{aligned}

  • 超参数

    • adam optimizer
    • lr = 0.0001
    • 40 epoch
    • Perceptual Loss 权重 γ=0.0001\gamma=0.0001,采用VGG16 POOL2和POO5

High-Resolution Image Dehazing with respect to Training Losses and Receptive Field Sizes

LG=λ1L1+λVGGLVGG+λAvgLGAvg+λMaxLGMax L_{G}=\lambda_{1} L_{1}+\lambda_{V G G} L_{V G G}+\lambda_{A v g} L_{G A v g}+\lambda_{M a x} L_{G M a x}

  • input:512x512
  • 500 epoch
  • Adam optimizer (β 1 = 0.5)
  • learning rate = 0.0002.
  • batch size = 1
  • 【论文阅读】深度学习去雾2——去雾网络的Loss和超参数整理【论文阅读】深度学习去雾2——去雾网络的Loss和超参数整理

注:这里的GMax指的是,在Discriminate的时候,原版是求输出的概率score map的平均值作为loss,这里文章提出用最大值做loss。


Multi-scale Single Image Dehazing using Perceptual Pyramid Deep Network

【论文阅读】深度学习去雾2——去雾网络的Loss和超参数整理

  • LE reconstruction error
    LE=1CWHc=1Cw=1Wh=1HG(I(c,w,h),Θ)It(c,w,h)2 L_{E}=\frac{1}{C W H} \sum_{c=1}^{C} \sum_{w=1}^{W} \sum_{h=1}^{H}\left\|G(I(c, w, h), \Theta)-I_{t}(c, w, h)\right\|_{2}

  • perceptual Loss LP
    LP=1CvWvHvc=1Cvw=1Wvh=1HvϕV(G(I,Θ))ϕV(It)2 L_{P}=\frac{1}{C_{v} W_{v} H_{v}} \sum_{c=1}^{C_{v}} \sum_{w=1}^{W_{v}} \sum_{h=1}^{H_{v}}\left\|\phi_{V}(G(I, \Theta))-\phi_{V}\left(I_{t}\right)\right\|_{2}
    采用VGG-16,relu3_1

  • 总Loss
    L=LE+λPLP L=L_{E}+\lambda_{P} L_{P}
    权重参数分别为1和0.5

  • 超参数

    • ADAM
    • batch size = 1, input size = 640 x 640
    • lr = 0.002

Recursive Deep Residual Learning for Single Image Dehazing

【论文阅读】深度学习去雾2——去雾网络的Loss和超参数整理

  • epoch = 100
  • lr = 0.001[0~60], lr=0.0001[61~100]
  • Stochastic Gradient Descent (SGD). momentum parameter of 0.9.
  • Loss: L2

Single Image Dehazing via Conditional Generative Adversarial Network

【论文阅读】深度学习去雾2——去雾网络的Loss和超参数整理

  • GAN Loss
    LA=1Ni=1Nlog(1D(Ii,J~i)) L_{A}=\frac{1}{N} \sum_{i=1}^{N} \log \left(1-D\left(I_{i}, \widetilde{J}_{i}\right)\right)

  • VGG Loss

    LP=1Ni=1NFi(G(Ii))Fi(Ji)22 L_{P}=\frac{1}{N} \sum_{i=1}^{N}\left\|\mathcal{F}_{i}\left(G\left(I_{i}\right)\right)-\mathcal{F}_{i}\left(J_{i}\right)\right\|_{2}^{2}
    Vgg 具体的特征层未知

  • 带正则的L1 重建Loss(实际就是L1 + TV Loss)
    LT=1Ni=1N(G(Ii)Ji1+λG(Ii)1) L_{T}=\frac{1}{N} \sum_{i=1}^{N}\left(\left\|G\left(I_{i}\right)-J_{i}\right\|_{1}+\lambda\left\|\nabla G\left(I_{i}\right)\right\|_{1}\right)

  • 总loss
    L=αLA+βLP+γLT \mathcal{L}=\alpha L_{A}+\beta L_{P}+\gamma L_{T}

超参数

  • α=1,β=150,γ=150,λ=105 \alpha=1, \beta=150, \gamma=150, \lambda=10^{-5}

  • input size:256x256

  • lr = 0.0002

  • Adam