【论文阅读】深度学习去雾2——去雾网络的Loss和超参数整理
文章目录
- Towards Perceptual Image Dehazing by Physics-Based Disentanglement and Adversarial Training
- Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing
- High-Resolution Image Dehazing with respect to Training Losses and Receptive Field Sizes
- Multi-scale Single Image Dehazing using Perceptual Pyramid Deep Network
- Recursive Deep Residual Learning for Single Image Dehazing
- Single Image Dehazing via Conditional Generative Adversarial Network
Towards Perceptual Image Dehazing by Physics-Based Disentanglement and Adversarial Training
-
重建Loss,L1
-
GAN Loss,多尺度Discrimiation均值
-
正则Loss,TV Loss
-
总Loss
权重未知
Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing
-
Perceptual Loss(VGG16 feature extractor from 2nd and 5th pooling layers)
-
GAN Loss
-
总Loss
-
超参数
- adam optimizer
- lr = 0.0001
- 40 epoch
- Perceptual Loss 权重 ,采用VGG16 POOL2和POO5
High-Resolution Image Dehazing with respect to Training Losses and Receptive Field Sizes
- input:512x512
- 500 epoch
- Adam optimizer (β 1 = 0.5)
- learning rate = 0.0002.
- batch size = 1
-
注:这里的GMax指的是,在Discriminate的时候,原版是求输出的概率score map的平均值作为loss,这里文章提出用最大值做loss。
Multi-scale Single Image Dehazing using Perceptual Pyramid Deep Network
-
LE reconstruction error
-
perceptual Loss LP
采用VGG-16,relu3_1 -
总Loss
权重参数分别为1和0.5 -
超参数
- ADAM
- batch size = 1, input size = 640 x 640
- lr = 0.002
Recursive Deep Residual Learning for Single Image Dehazing
- epoch = 100
- lr = 0.001[0~60], lr=0.0001[61~100]
- Stochastic Gradient Descent (SGD). momentum parameter of 0.9.
- Loss: L2
Single Image Dehazing via Conditional Generative Adversarial Network
-
GAN Loss
-
VGG Loss
Vgg 具体的特征层未知 -
带正则的L1 重建Loss(实际就是L1 + TV Loss)
-
总loss
超参数
-
-
input size:256x256
-
lr = 0.0002
-
Adam