Paper Reading:Learning Transferable Architectures for Scalable Image Recognition
Learning Transferable Architectures for Scalable Image Recognition
Motivation
NAS直接搜全部结构方法太慢,设计一个搜索空间较小的方法。即类似于LSTM中的子结构,重复堆叠这些子结构,从而得到较深的网络。
Architecture
对于两种不同的数据集,大致的设计了两种不同的网络结构,
确定好整体结构后,按照以下步骤
-
Step 1. Select a hidden state from hi, hi−1 or from the set of hidden states created in previous blocks.
-
Step 2. Select a second hidden state from the same options as in Step 1.
-
Step 3. Select an operation to apply to the hidden state selected in Step 1.
-
Step 4. Select an operation to apply to the hidden state selected in Step 2.
-
Step 5. Select a method to combine the outputs of Step 3 and 4 to create a new hidden state.
第三步和第四步的操作合集如下,
第五步的操作合集如下,
(1) element-wise addition be- tween two hidden states or
(2) concatenation between two hidden states along the filter dimension
Experiment
最终得到的网络结果如下:
在分类上的结果,