图的邻接矩阵表示法和图的遍历

  1. 图有邻接矩阵表示法,邻接表表示法等方法。邻接矩阵适合线路比较多的图,邻接表适合线路相对来说比较少的图。我们遍历的图如下图所示:
    图的邻接矩阵表示法和图的遍历
  2. 我们使用邻接矩阵表示图。建立图的类:
  3. class Graph
    {
    public:
    Graph(int n = 10)//构造函数中完成对类的各种数据的初始化。
    {
    this->vertexNum = n;
    this->vertexMatrix = new int *[this->vertexNum];
    for (int i = 0; i < this->vertexNum; i++)
    {
    this->vertexMatrix[i] = new int[this->vertexNum];
    }
    this->visit = new int[this->vertexNum];
    for (int i = 0; i < this->vertexNum; i++)
    {
    this->visit[i] = 0;
    for (int j = 0; j < this->vertexNum; j++)
    {
    if (i == j)
    this->vertexMatrix[i][j] = 0;
    else
    this->vertexMatrix[i][j] = MAX_VAL;
    }
    }
    }
    bool addEdge(int x, int y, int val)//插入边,并判断边的顶点是否符合要求
    {
    if (x < 0 || x >= this->vertexNum || y < 0 || y >= this->vertexNum)
    {
    return false;
    }
    this->vertexMatrix[x][y] = val;
    this->vertexMatrix[y][x] = val;
    return true;
    }
    void displayMatrix()//打印邻接矩阵
    {
    for (int i = 0; i < this->vertexNum; i++)
    {
    for (int j = 0; j < this->vertexNum; j++)
    {
    if (this->vertexMatrix[i][j] == 900)
    {
    cout << “inf” << " ";
    }
    else
    {
    cout << this->vertexMatrix[i][j] << " ";
    }
    }
    cout << endl;
    }
    }
    void DFS(int v)//深度优先遍历
    {
    cout << v << " ";
    this->visit[v] = 1;
    for (int i = 0; i < this->vertexNum; i++)
    {
    if (this->visit[i] == 0 && this->vertexMatrix[v][i] != MAX_VAL)
    {
    DFS(i);
    }
    }
    }
    void BFS(int v)
    {
    queue gq;
    gq.push(v);
    while (!gq.empty())
    {
    int v1 = gq.front();
    gq.pop();
    if (this->visit[v1] == 0)//一定要加这个判断,否则一个同层次的节点会把一个节点写到队列两次,导致打印两次。产生错误。
    {
    this->visit[v1] = 1;
    cout << v1 << " ";
    }
    for (int i = 0; i < this->vertexNum; i++)
    {
    if (this->visit[i] == 0 && this->vertexMatrix[v1][i]!=MAX_VAL)
    {
    gq.push(i);
    }
    }
    }
    }
    private:
    int **vertexMatrix;//类的邻接矩阵,用二维数组表示。
    int vertexNum;//顶点个数
    int *visit;//表明该顶点是否被访问过
    };
    int main()
    {
    Graph *g = new Graph(7);
    g->addEdge(1, 2, 4);//添加各个图形的边
    g->addEdge(1, 4, 6);
    g->addEdge(2, 4, 1);
    g->addEdge(2, 5, 4);
    g->addEdge(3, 4, 3);
    g->addEdge(3, 5, 7);
    g->addEdge(4, 5, 2);
    g->addEdge(4, 6, 5);
    g->addEdge(5, 0, 4);
    g->addEdge(6, 0, 6);
    g->displayMatrix();
    g->BFS(1);
    system(“pause”);
    return 0;
    }
    执行结果:
    图的邻接矩阵表示法和图的遍历
    图的深度遍历主要应用在求解一个这样的问题,比如入口到出口存在多条路径,求出所有路径。
    图的广度遍历主要应用在比如入口到出口存在多天路径,求出最短路径。