QIIME 2教程. 30补充资源SupplementaryResources(2020.2)
文章目录
前情提要
- NBT:QIIME 2可重复、交互式的微生物组分析平台
- 1简介和安装Introduction&Install
- 2插件工作流程概述Workflow
- 3老司机上路指南Experienced
- 4人体各部位微生物组分析Moving Pictures
- Genome Biology:人体各部位微生物组时间序列分析
- 5粪菌移植分析练习FMT
- Microbiome:粪菌移植改善自闭症
- 6沙漠土壤分析Atacama soil
- mSystems:干旱对土壤微生物组的影响
- 7帕金森小鼠教程Parkinson’s Mouse
- Cell:肠道菌群促进帕金森发生ParkinsonDisease
- 8差异丰度分析gneiss
- 9数据导入Importing data
- 10数据导出Exporting data
- 11元数据Metadata
- 12数据筛选Filtering data
- 13训练特征分类器Training feature classifiers
- 14数据评估和质控Evaluating and controlling
- 15样品分类和回归q2-sample-classifier
- 16纵向和成对样本比较q2-longitudinal
- 17鉴定和过滤嵌合体序列q2-vsearch
- 18序列双端合并read-joining
- 19使用q2-vsearch聚类OTUs
- 20实用程序Utilities
- 21进化树推断q2-phylogeny
- 22命令行界面q2cli
- 23图形界面q2studio
- 24Python命令行模式Artifact API
- 25可用和开发中插件AvailableFuturePlugins
- 26开发新插件DevelopingPlugin
- 27语义类型Semantic
- 28社区Community
- 29参考数据库DataResources
补充资源 Supplementary resources
https://docs.qiime2.org/2020.2/supplementary-resources/
教学内容 Educational content
以下资源对于了解有关微生物组分析和生物信息学的更多信息很有用:
应用生物信息学导论
An Introduction to Applied Bioinformatics
http://readiab.org/
这是一套基于Python的生物信息、统计学交互学习教材,有详细的理解讲解,并可在线或本地实战。
肠道检查:探索身体中的微生物群系
Gut Check: Exploring Your Microbiome
https://www.coursera.org/learn/microbiome
这是Rob Knight曾经在科罗拉多大学开设的微生物组入门课程,而且持续更新,目前已经有6万余人学习,绝对是入门必备。有视频讲解,有阅读材料,有测验和作业互评。视频、文本还可以下载。4年前学过,虽然现在已经记得的不多,但当时收获还是非常之大。
微生物生态学统计分析指南
Guide to Statistical Analysis in Microbial Ecology
http://mb3is.megx.net/gustame
非常好生物统计学教程。对于PCoA、PCA、各种排序和统计有详细的解读。
总结:以上3门课的系统学习,为将来在本领域的发展的基础课程。得一可入门,得二可有远见,全学会必成本领域大才。
译者简介
刘永鑫,博士。2008年毕业于东北农业大学微生物学专业,2014年于中国科学院大学获生物信息学博士学位,2016年中科院遗传发育所博士后出站留所任工程师。目前主要研究方向有微生物组数据分析、方法开发和科学传播。目前以第一作者(含共同)或微生物组数据分析负责人在Science、Nature Biotechnology、Cell Host & Microbe 等杂志发表论文20余篇,引用千余次。作为中国唯一单位代表参与微生物组分析平台QIIME 2开发。受邀以第一作者和/或通讯作者(含共同)在Protein & Cell、Current Opinion in Microbiology、遗传 等杂志发表微生物组研究方法综述。2017年7月创办“宏基因组”公众号,目前分享本领域相关原创文章1800余篇,代表作品有《微生物组图表解读、分析流程和统计绘图》、《QIIME2中文教程》等系列,关注人数9万+,累计阅读1400万+。
Reference
https://docs.qiime2.org/2020.2
Evan Bolyen*, Jai Ram Rideout*, Matthew R. Dillon*, Nicholas A. Bokulich*, Christian C. Abnet, Gabriel A. Al-Ghalith, Harriet Alexander, Eric J. Alm, Manimozhiyan Arumugam, Francesco Asnicar, Yang Bai, Jordan E. Bisanz, Kyle Bittinger, Asker Brejnrod, Colin J. Brislawn, C. Titus Brown, Benjamin J. Callahan, Andrés Mauricio Caraballo-Rodríguez, John Chase, Emily K. Cope, Ricardo Da Silva, Christian Diener, Pieter C. Dorrestein, Gavin M. Douglas, Daniel M. Durall, Claire Duvallet, Christian F. Edwardson, Madeleine Ernst, Mehrbod Estaki, Jennifer Fouquier, Julia M. Gauglitz, Sean M. Gibbons, Deanna L. Gibson, Antonio Gonzalez, Kestrel Gorlick, Jiarong Guo, Benjamin Hillmann, Susan Holmes, Hannes Holste, Curtis Huttenhower, Gavin A. Huttley, Stefan Janssen, Alan K. Jarmusch, Lingjing Jiang, Benjamin D. Kaehler, Kyo Bin Kang, Christopher R. Keefe, Paul Keim, Scott T. Kelley, Dan Knights, Irina Koester, Tomasz Kosciolek, Jorden Kreps, Morgan G. I. Langille, Joslynn Lee, Ruth Ley, Yong-Xin Liu, Erikka Loftfield, Catherine Lozupone, Massoud Maher, Clarisse Marotz, Bryan D. Martin, Daniel McDonald, Lauren J. McIver, Alexey V. Melnik, Jessica L. Metcalf, Sydney C. Morgan, Jamie T. Morton, Ahmad Turan Naimey, Jose A. Navas-Molina, Louis Felix Nothias, Stephanie B. Orchanian, Talima Pearson, Samuel L. Peoples, Daniel Petras, Mary Lai Preuss, Elmar Pruesse, Lasse Buur Rasmussen, Adam Rivers, Michael S. Robeson, Patrick Rosenthal, Nicola Segata, Michael Shaffer, Arron Shiffer, Rashmi Sinha, Se Jin Song, John R. Spear, Austin D. Swafford, Luke R. Thompson, Pedro J. Torres, Pauline Trinh, Anupriya Tripathi, Peter J. Turnbaugh, Sabah Ul-Hasan, Justin J. J. van der Hooft, Fernando Vargas, Yoshiki Vázquez-Baeza, Emily Vogtmann, Max von Hippel, William Walters, Yunhu Wan, Mingxun Wang, Jonathan Warren, Kyle C. Weber, Charles H. D. Williamson, Amy D. Willis, Zhenjiang Zech Xu, Jesse R. Zaneveld, Yilong Zhang, Qiyun Zhu, Rob Knight & J. Gregory Caporaso#. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology. 2019, 37(8): 852-857. doi:10.1038/s41587-019-0209-9
猜你喜欢
- 10000+: 菌群分析
宝宝与猫狗 提DNA发Nature 实验分析谁对结果影响大 Cell微生物专刊 肠道指挥大脑 - 系列教程:微生物组入门 Biostar 微生物组 宏基因组
- 专业技能:生信宝典 学术图表 高分文章 不可或缺的人
- 一文读懂:宏基因组 寄生虫益处 进化树
- 必备技能:提问 搜索 Endnote
- 文献阅读 热心肠 SemanticScholar Geenmedical
- 扩增子分析:图表解读 分析流程 统计绘图
- 16S功能预测 PICRUSt FAPROTAX Bugbase Tax4Fun
- 在线工具:16S预测培养基 生信绘图
- 科研经验:云笔记 云协作 公众号
- 编程模板: Shell R Perl
- 生物科普: 肠道细菌 人体上的生命 生命大跃进 细胞暗战 人体奥秘
写在后面
为鼓励读者交流、快速解决科研困难,我们建立了“宏基因组”专业讨论群,目前己有国内外5000+ 一线科研人员加入。参与讨论,获得专业解答,欢迎分享此文至朋友圈,并扫码加主编好友带你入群,务必备注“姓名-单位-研究方向-职称/年级”。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍末解决群内讨论,问题不私聊,帮助同行。
学习扩增子、宏基因组科研思路和分析实战,关注“宏基因组”
点击阅读原文,跳转最新文章目录阅读
https://mp.weixin.qq.com/s/5jQspEvH5_4Xmart22gjMA