均值滤波python实现不调用opencv
数字图像均值滤波
- 滤波的作用:
对数字图像进行滤波其主要目的是消除其中的噪声,保留图像中的有用信息平滑图像,因此图像滤波也叫图像平滑。图像和数字信号也有共同之处,就是有用信息基本都在低频段或者中频段,这也是信号滤波的基础。
2、均值滤波原理:
均值滤波过程中,使用周围像素点的均值来代替中心点的值。其数学解释在于,当某一个点的远低于或者远大于其他像素点的值时,使用均值代替该点的值可以使得该点更接近于真实值。
3、代码
def Mean_Filter(self, padding = None): imgarray = self.Add_Salt_Noise() height, width = imgarray.shape[0], imgarray.shape[1] if not padding: edge = int((self.k -1)/2) if height -1 -edge <=edge or width -1-edge<=edge: print("the kenerl is to long") return None for i in range(height): for j in range(width): if i <=edge -1 or i >= height -1 -edge or j <=edge -1 or j >= height -1 -edge: imgarray[i][j] = imgarray[i][j] else: num = [] sum0 = 0 sum1 = 0 sum2 = 0 for m in range(i - edge, i + edge + 1): for n in range(j -edge, j+edge + 1): sum0 = sum0 + imgarray[m][n][0] sum1 = sum1 + imgarray[m][n][1] sum2 = sum2 + imgarray[m][n][2] mean0 = sum0 / (self.k * self.k) mean1 = sum1 / (self.k * self.k) mean2 = sum2 / (self.k * self.k) mean =[mean0, mean1, mean2] print("mean", mean) imgarray[i][j] = mean #赋值 new_img = Image.fromarray(imgarray) new_img.save(self.mean_img)
def Add_Salt_Noise(self): # 加椒盐噪声 img = Image.open(self.source_img) imgarray = np.array(img) height,width = imgarray.shape[0], imgarray.shape[1] for i in range(height): for j in range(width): if np.random.random(1) < 0.05: if np.random.random(1) < 0.3: imgarray[i][j] = 0 else: imgarray[i][j] = 255 new_img = Image.fromarray(imgarray) new_img.save(self.noise_img) return imgarray