从0到1详解推荐系统中的大数据开发学习方法都讲明白了
大数据具有五大特点,称为5V。
1. 多样(Variety)
大数据的多样性是指数据的种类和来源是多样化的,数据可以是结构化的、半结构化的以及非结构化的,数据的呈现形式包括但不仅限于文本,图像,视频,HTML页面等等。
2. 大量(Volume)
大数据的大量性是指数据量的大小,这个就是上面笔者介绍的内容,不再赘述。
3. 高速(Velocity)
大数据的高速性是指数据增长快速,处理快速,每一天,各行各业的数据都在呈现指数性爆炸增长。在许多场景下,数据都具有时效性,如搜索引擎要在几秒中内呈现出用户所需数据。企业或系统在面对快速增长的海量数据时,必须要高速处理,快速响应。
4. 低价值密度(Value)
大数据的低价值密度性是指在海量的数据源中,真正有价值的数据少之又少,许多数据可能是错误的,是不完整的,是无法利用的。总体而言,有价值的数据占据数据总量的密度极低,提炼数据好比浪里淘沙。
5. 真实性(Veracity)
大数据的真实性是指数据的准确度和可信赖度,代表数据的质量。
数据一直都在,变革的是方式
大数据的意义不仅仅在于生产和掌握庞大的数据信息,更重要的是对有价值的数据进行专业化处理。
人类从来不缺数据,缺的是对数据进行深度价值挖掘与利用。可以说,从人类社会有了文字以来,数据就开始存在了,现在亦是如此。这其中唯一改变的是数据从产生,到记录,再到使用这整个流程的形式。
想要在大数据这个领域汲取养分,让自己壮大成长。分享方向,行动以前先分享下一个大数据交流分享资源群870097548,欢迎想学习,想转行的,进阶中你加入学习。
二、学大数据需要什么语言基础?
首先,学习大数据是需要有java,python和R语言的基础。
1) Java学习到什么样的程度才可以学习大数据呢?
java需要学会javaSE即可。javaweb,javaee对于大数据用不到。学会了javase就可以看懂hadoop框架。
2) python是最容易学习的,难易程度:python java Scala 。
python不是比java更直观好理解么,因为会了Python 还是要学习java的,你学会了java,再来学习python会很简单的,一周的时间就可以学会python。
3) R语言也可以学习,但是不推荐,因为java用的人最多,大数据的第一个框架Hadoop,底层全是Java写的。就算学会了R还是看不懂hadoop。
java在大数据中的作用是构成大数据的语言,大数据的第一个框架Hadoop以及其他大数据技术框架,底层语言全是Java写的,所以推荐首选学习java
再给你们举例说明下它们的分工和作用,java注重业务,大数据注重数据,前端是脸(页面显示),java是胳膊(业务),大数据是直男大脑,人工智能,深度学习是有情商的大脑。
三、大数据职业发展方向
学会了大数据,不需要从java做起,可以直接做大数据开发工程师。等积累了几年的经验, 就可以做算法工程师了。看看学会了大数据可以从事哪些岗位:
大数据开发工程师
数据分析师
hadoop开发工程师
spark开发工程师
数据仓库开发工程师
数据清洗工程师(ETL)
大数据架构师
算法工程
四、大数据优势
大数据受国家大力支持大量的资源都投资在这方面,大数据中心在贵州落坐,人工智能和云计算都基于大数据,需要大批大数据人才。
1)、大数据人才薪资待遇
一般的一线城市大数据相关岗位平均月薪在12-15K 北京平均17K,大数据算法工程师,年薪在30万—50万左右。
2)学习大数据有学历/专业要求吗
高中也找到工作,但是大专以上学历更好,虽然是本科学历,但大学四年中也没有学习到实际的操作技能,学习到的东西在工作中用不到,只是在理解某些东西容易些。
五、大数据学习路线
大数据高手班课程大纲:
linux+高并发 + Hadoop生态圈 +分布式搜索+ Strom流式计算 + Spark + 机器学习算法
正常来讲学习大数据之前都要做到以下几点:
1.学习基础的编程语言(java)
2.掌握入门编程基础(linux操作,数据库操作、git操作)
3.学习大数据里面的各种框架(hadoop、hive、hbase、spark)
这是正常学习大数据必须要做到的三个步骤,如果有了java基础再去学习基本上已经成功了一半,起码不用为了基础语言的学习而恼火了。
真正的大数据的学习不能仅仅停留在理论的层面上,比如现在经常用到的spark框架目前支持两种语言的开发java或者Scala,现在python语言也能支持了。大数据的方向的切入是全方位的,基础语言的学习只是很小的一个方面,编程落实到最后到编程思想,有了指导思想学习起来就能方便很多。
六、0基础可以学大数据吗
虽然大数据需要Java基础。但是,0基础小伙伴也可以学。