图的深度优先遍历和广度优先遍历

1.深度优先搜索(DFS)

1.1 无向图的深度优先搜索

如下图所示,深度优先搜索就是从初始节点出发,依次向邻接顶点遍历,邻接顶点进行递归,接着向其邻接顶点遍历,直至全部顶点遍历结束,最终返回主节点。

图的深度优先遍历和广度优先遍历

具体步骤:主节点为A,从A依次遍历,并按照左手法则优先选择。
从A->B,从B->C,C->F,F此时没有邻接顶点,F返回到C,C的邻接顶点都被访问到,C返回到B,B的邻接点E没有被访问,访问E,E->G, G->D, D->G, G->H, H->G, G->E, E->B, B->A,遍历结束。

1.2 有向图的深度优先搜所
图的深度优先遍历和广度优先遍历
第1步:访问A。
第2步:访问B。
在访问了A之后,接下来应该访问的是A的出边的另一个顶点,即顶点B。
第3步:访问C。
在访问了B之后,接下来应该访问的是B的出边的另一个顶点,即顶点C,E,F。在本文实现的图中,顶点ABCDEFG按照顺序存储,因此先访问C。
第4步:访问E。
接下来访问C的出边的另一个顶点,即顶点E。
第5步:访问D。
接下来访问E的出边的另一个顶点,即顶点B,D。顶点B已经被访问过,因此访问顶点D。
第6步:访问F。
接下应该回溯"访问A的出边的另一个顶点F"。
第7步:访问G。

因此访问顺序是:A -> B -> C -> E -> D -> F -> G

2.广度优先搜索(BFS)

广度优先搜索算法(Breadth First Search),又称为"宽度优先搜索"或"横向优先搜索",简称BFS。
它的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2…的顶点。

2.1 无向图的广度优先搜索

下面以"无向图"为例,来对广度优先搜索进行演示。以下面的图G1为例进行说明。
图的深度优先遍历和广度优先遍历
第1步:访问A。
第2步:依次访问C,D,F。
在访问了A之后,接下来访问A的邻接点。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,C在"D和F"的前面,因此,先访问C。再访问完C之后,再依次访问D,F。
第3步:依次访问B,G。
在第2步访问完C,D,F之后,再依次访问它们的邻接点。首先访问C的邻接点B,再访问F的邻接点G。
第4步:访问E。
在第3步访问完B,G之后,再依次访问它们的邻接点。只有G有邻接点E,因此访问G的邻接点E。

因此访问顺序是:A -> C -> D -> F -> B -> G -> E

2.2 有向图的广度优先搜索
图的深度优先遍历和广度优先遍历
第1步:访问A。
第2步:访问B。
第3步:依次访问C,E,F。
在访问了B之后,接下来访问B的出边的另一个顶点,即C,E,F。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访问E,F。
第4步:依次访问D,G。
在访问完C,E,F之后,再依次访问它们的出边的另一个顶点。还是按照C,E,F的顺序访问,C的已经全部访问过了,那么就只剩下E,F;先访问E的邻接点D,再访问F的邻接点G。

因此访问顺序是:A -> B -> C -> E -> F -> D -> G