18. 4Sum (多数求和的方案)
题目
大体思路
给出能得到的四位数字的sum=target的解法。
有所思路,相对来说,4个数字的和要比3个算法难一些,但是好在这个题目要求给出解题集合,而不需要计算一共可能的解法数。
就个人思路而言,大概是使用排列组合的方法计算出可能的集合,并加以逻辑筛选。
参考代码(可以用掉n个数的和的领域)
其核心是实现一个快速的2指针求解2个数的和,并通过递归将n和简化为2和。在知道列表已排序的情况下进行了一些优化。
class Solution:
def fourSum(self, nums, target):
nums.sort()
results = []
self.findNsum(nums, target, 4, [], results)
return results
def findNsum(self, nums, target, N, result, results):
if len(nums) < N or N < 2: return
# solve 2-sum
if N == 2:
l,r = 0,len(nums)-1
while l < r:
if nums[l] + nums[r] == target:
results.append(result + [nums[l], nums[r]])
l += 1
r -= 1
# 两个指针移动掉一些相同的元素
while l < r and nums[l] == nums[l - 1]:
l += 1 #
while r > l and nums[r] == nums[r + 1]:
r -= 1
elif nums[l] + nums[r] < target:
l += 1
else:
r -= 1
else:
for i in range(0, len(nums)-N+1): # careful about range
if target < nums[i]*N or target > nums[-1]*N: # take advantages of sorted list
break # 不可能完成的任务/无需遍历。
if i == 0 or i > 0 and nums[i-1] != nums[i]: # recursively reduce N # 排除相等元素
self.findNsum(nums[i+1:], target-nums[i], N-1, result+[nums[i]], results)
return
重写并清理冗余代码:
def fourSum(self, nums, target):
def findNsum(nums, target, N, result, results):
if len(nums) < N or N < 2 or target < nums[0]*N or target > nums[-1]*N: # early termination
return
if N == 2: # two pointers solve sorted 2-sum problem
l,r = 0,len(nums)-1
while l < r:
s = nums[l] + nums[r]
if s == target:
results.append(result + [nums[l], nums[r]])
l += 1
while l < r and nums[l] == nums[l-1]:
l += 1
elif s < target:
l += 1
else:
r -= 1
else: # recursively reduce N
for i in range(len(nums)-N+1):
if i == 0 or (i > 0 and nums[i-1] != nums[i]):
findNsum(nums[i+1:], target-nums[i], N-1, result+[nums[i]], results)
results = []
findNsum(sorted(nums), target, 4, [], results)
return results
传递指针,而不是切片列表:
def fourSum(self, nums, target):
def findNsum(l, r, target, N, result, results):
if r-l+1 < N or N < 2 or target < nums[l]*N or target > nums[r]*N: # early termination
return
if N == 2: # two pointers solve sorted 2-sum problem
while l < r:
s = nums[l] + nums[r]
if s == target:
results.append(result + [nums[l], nums[r]])
l += 1
while l < r and nums[l] == nums[l-1]:
l += 1
elif s < target:
l += 1
else:
r -= 1
else: # recursively reduce N
for i in range(l, r+1):
if i == l or (i > l and nums[i-1] != nums[i]):
findNsum(i+1, r, target-nums[i], N-1, result+[nums[i]], results)
nums.sort()
results = []
findNsum(0, len(nums)-1, target, 4, [], results)
return results