leetcode 33. Search in Rotated Sorted Array
题目描述
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., [0,1,2,4,5,6,7]
might become [4,5,6,7,0,1,2]
).
You are given a target value to search. If found in the array return its index, otherwise return -1
.
You may assume no duplicate exists in the array.
Your algorithm's runtime complexity must be in the order of O(log n).
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0 Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3 Output: -1
思路1:分析mid所在区间的情况
nums[mid]要么落在左边升序的数据区间内,要么落在右边升序的数据区间内。
- 当nums[mid]在右边升序区间内,若nums[mid]<target<nums[right],向右查找;否则向左查找。
- 当nums[mid]在左边升序区间内,若nums[left]<=target<nums[mid],向左查找;否则向右查找。
第一种情况:(nums[mid]>nums[left]) nums[mid]落在了左边升序区间
此时若target>nums[mid],则查找的数在mid和right之间,left=mid+1
若target<nums[mid],则查找的数可能在最左边的[left,mid]之间,也可能在最右边的[mid+1,right]之间。
此时需要将target和nums[left]进行比较,来确定target在哪个子区间。
第二种情况:nums[mid]<nums[left],mid落在了右边升序区间。
此时如果target<nums[mid],则target在右边区域靠左部分,right=mid-1
若target>nums[mid],则此时target可能存在于右边区域的靠右部分,[mid+1,right],也可能存在于左边区域[left,mid]中
此时需要将nums[mid]与nums[right]进行比较,确定具体属于哪个子区间。
实现1:
class Solution {
public int search(int[] nums, int target) {
if(nums.length==1&&nums[0]==target) return 0;
int left=0;
int right=nums.length-1;
while(left<right){
int mid=(left+right)/2;
if(nums[left]==target) return left;
if(nums[right]==target) return right;
if(nums[mid]==target) return mid;
if(nums[mid]>nums[left]){
if(target>nums[mid]){
left=mid+1;
}else{
if(target>nums[left]){
right=mid-1;
}else{
left=mid+1;
}
}
}else{
if(target<nums[mid]){
right=mid-1;
}else{
if(target<nums[right]){
left=mid+1;
}else{
right=mid-1;
}
}
}
}
return -1;
}
}
实现2:
class Solution {
public int search(int[] nums, int target) {
int left=0;
int right=nums.length-1;
while(left<=right){
int mid=(left+right)/2;
if(nums[mid]==target){
return mid;
}else if(nums[mid]<nums[right]){
//落在了右边区域
if(nums[mid]<target&&target<=nums[right]){
left=mid+1;
}else{
right=mid-1;
}
}else{
if(nums[left]<=target&&target<nums[mid]){
right=mid-1;
}else{
left=mid+1;
}
}
}
return -1;
}
}
思路2:先利用二分查找确定转折点,然后对转折点两侧的数据分别再进行二分查找。
class Solution {
public int search(int[] nums, int target) {
if(nums.length==0) return -1;
int left=0;
int right=nums.length-1;
while(left<right){
int mid=(left+right)/2;
if(nums[mid]>nums[right]){
left=mid+1;
}else{
right=mid;
}
}
//找到了旋转点
int a=binarySearch(nums,target,0,right-1);
int b=binarySearch(nums,target,right,nums.length-1);
return a>b?a:b;
}
private int binarySearch(int[] nums,int target,int left,int right){
while(left<=right){
int mid=(left+right)/2;
if(nums[mid]==target){
return mid;
}else if(nums[mid]<target){
left=mid+1;
}else{
right=mid-1;
}
}
return -1;
}
}
参考: