【深度学习之Caffe】将模型测试Classification过程生成动态链接库dll以方便其他项目调用

运行环境

Win10  VS2013  GPU(1070 8G) CUDA9.1 Cudnn7.1

前期准备

已在Release配置下编译完成Caffe+GPU(此过程不多做阐述)

新建空白项目

【深度学习之Caffe】将模型测试Classification过程生成动态链接库dll以方便其他项目调用

更改配置

配置管理器->活动解决方案平台:新建->键入或选择新平台:x64->确定

【深度学习之Caffe】将模型测试Classification过程生成动态链接库dll以方便其他项目调用

更改文件扩展名和配置类型

【深度学习之Caffe】将模型测试Classification过程生成动态链接库dll以方便其他项目调用

添加包含目录和库目录

【深度学习之Caffe】将模型测试Classification过程生成动态链接库dll以方便其他项目调用

包含目录包括:

CUDA的include目录

  1. C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\include  

Caffe项目中的include

  1. D:\caffe-class\include  

NugetPackages中的相关包含目录,包括如下:

  1. D:\caffe\NugetPackages\gflags.2.1.2.1\build\native\include  
  2. D:\caffe\NugetPackages\glog.0.3.3.0\build\native\include  
  3. D:\caffe\NugetPackages\protobuf-v120.2.6.1\build\native\include  
  4. D:\caffe\NugetPackages\OpenCV.2.4.10\build\native\include  
  5. D:\caffe\NugetPackages\OpenBLAS.0.2.14.1\lib\native\include  
  6. D:\caffe\NugetPackages\boost.1.59.0.0\lib\native\include 

建议把后两部分的include文件添加到caffe_classify项目目录下的一个单独的include文件夹中(我是这么做的)

库目录包括:

CUDA的lib目录

  1. C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1\lib\x64  

Caffe项目中的编译生成的Release目录

  1. D:\caffe\caffe-master\Build\x64\Release

NugetPackages中的相关库目录,包括如下:

  1. E:\caffe\NugetPackages\OpenCV.2.4.10\build\native\lib\x64\v120\Release 
  2. E:\caffe\NugetPackages\gflags.2.1.2.1\build\native\x64\v120\dynamic\Lib  
  3. E:\caffe\NugetPackages\glog.0.3.3.0\build\native\lib\x64\v120\Release \dynamic  
  4. E:\caffe\NugetPackages\OpenBLAS.0.2.14.1\lib\native\lib\x64  
  5. E:\caffe\NugetPackages\protobuf-v120.2.6.1\build\native\lib\x64\v120\Release  
  6. E:\caffe\NugetPackages\LevelDB-vc120.1.2.0.0\build\native\lib\x64\v120\Release 
  7. E:\caffe\NugetPackages\hdf5-v120-complete.1.8.15.2\lib\native\lib\x64  
  8. E:\caffe\NugetPackages\boost_date_time-vc120.1.59.0.0\lib\native\address-model-64\lib  
  9. E:\caffe\NugetPackages\boost_filesystem-vc120.1.59.0.0\lib\native\address-model-64\lib  
  10. E:\caffe\NugetPackages\boost_system-vc120.1.59.0.0\lib\native\address-model-64\lib  
  11. E:\caffe\NugetPackages\boost_thread-vc120.1.59.0.0\lib\native\address-model-64\lib  
  12. E:\caffe\NugetPackages\boost_chrono-vc120.1.59.0.0\lib\native\address-model-64\lib  

建议把后两部分的lib文件添加到caffe_classify项目目录下的一个单独的lib文件夹中(我是这么做的)

添加附加依赖项

【深度学习之Caffe】将模型测试Classification过程生成动态链接库dll以方便其他项目调用
附加依赖项如下:

  1. libglog.lib  
  2. libcaffe.lib  
  3. gflags.lib  
  4. gflags_nothreads.lib  
  5. hdf5.lib  
  6. hdf5_hl.lib  
  7. libprotobuf.lib  
  8. libopenblas.dll.a  
  9. cublas.lib  
  10. cuda.lib  
  11. curand.lib  
  12. cudart.lib  
  13. cudnn.lib  
  14. Shlwapi.lib  
  15. LevelDb.lib  
  16. lmdb.lib  
  17. opencv_core2410.lib  
  18. opencv_highgui2410.lib  
  19. opencv_imgproc2410.lib  
  20. opencv_video2410.lib  
  21. opencv_objdetect2410.lib  

添加预处理器定义

【深度学习之Caffe】将模型测试Classification过程生成动态链接库dll以方便其他项目调用
预处理器定义中添加:_SCL_SECURE_NO_WARNINGS

添加相关代码

caffe_classify.h

  1. #ifndef CAFFE_CLASSIFY_H_  
    #define CAFFE_CLASSIFY_H_  

    #include <caffe/caffe.hpp>  
    #include <opencv2/core/core.hpp>  
    #include <opencv2/highgui/highgui.hpp>  
    #include <opencv2/imgproc/imgproc.hpp>  
    #include <algorithm>  
    #include <iosfwd>  
    #include <memory>  
    #include <string>  
    #include <utility>  
    #include <vector>  

  2. #pragma once  

    using namespace caffe;  // NOLINT(build/namespaces)  
    using std::string;

    /* Pair (label, confidence) representing a prediction. */
    typedef std::pair<string, float> Prediction;

    class Classifier {
    public:
    Classifier(const string& model_file,
    const string& trained_file,
    const string& mean_file,
    const string& label_file);

    std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);

    private:
    void SetMean(const string& mean_file);


    std::vector<float> Predict(const cv::Mat& img);

    void WrapInputLayer(std::vector<cv::Mat>* input_channels);

    void Preprocess(const cv::Mat& img,
    std::vector<cv::Mat>* input_channels);

    private:
    shared_ptr<Net<float> > net_;
    cv::Size input_geometry_;
    int num_channels_;
    cv::Mat mean_;
    std::vector<string> labels_;
    };

    #endif

caffe_classify.cpp

  1. #include "caffe_classify.h"  
    #include "head.h"  

    Classifier::Classifier(const string& model_file,
    const string& trained_file,
    const string& mean_file,
    const string& label_file) {
    #ifdef CPU_ONLY
    Caffe::set_mode(Caffe::CPU);
    #else
    Caffe::set_mode(Caffe::GPU);
    #endif

    /* Load the network. */
    net_.reset(new Net<float>(model_file, TEST));
    net_->CopyTrainedLayersFrom(trained_file);

    CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
    CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";

    Blob<float>* input_layer = net_->input_blobs()[0];
    num_channels_ = input_layer->channels();
    CHECK(num_channels_ == 3 || num_channels_ == 1)
    << "Input layer should have 1 or 3 channels.";
    input_geometry_ = cv::Size(input_layer->width(), input_layer->height());

    /* Load the binaryproto mean file. */
    SetMean(mean_file);

    /* Load labels. */
    std::ifstream labels(label_file.c_str());
    CHECK(labels) << "Unable to open labels file " << label_file;
    string line;
    while (std::getline(labels, line))
    labels_.push_back(string(line));

    Blob<float>* output_layer = net_->output_blobs()[0];
    CHECK_EQ(labels_.size(), output_layer->channels())
    << "Number of labels is different from the output layer dimension.";
    }

    static bool PairCompare(const std::pair<float, int>& lhs,
    const std::pair<float, int>& rhs) {
    return lhs.first > rhs.first;
    }

    /* Return the indices of the top N values of vector v. */
    static std::vector<int> Argmax(const std::vector<float>& v, int N) {
    std::vector<std::pair<float, int> > pairs;
    for (size_t i = 0; i < v.size(); ++i)
    pairs.push_back(std::make_pair(v[i], static_cast<int>(i)));
    std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);

    std::vector<int> result;
    for (int i = 0; i < N; ++i)
    result.push_back(pairs[i].second);
    return result;
    }

    /* Return the top N predictions. */
    std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
    std::vector<float> output = Predict(img);

    N = std::min<int>(labels_.size(), N);
    std::vector<int> maxN = Argmax(output, N);
    std::vector<Prediction> predictions;
    for (int i = 0; i < N; ++i) {
    int idx = maxN[i];
    predictions.push_back(std::make_pair(labels_[idx], output[idx]));
    }

    return predictions;
    }

    /* Load the mean file in binaryproto format. */
    void Classifier::SetMean(const string& mean_file) {
    BlobProto blob_proto;
    ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);

    /* Convert from BlobProto to Blob<float> */
    Blob<float> mean_blob;
    mean_blob.FromProto(blob_proto);
    CHECK_EQ(mean_blob.channels(), num_channels_)
    << "Number of channels of mean file doesn't match input layer.";

    /* The format of the mean file is planar 32-bit float BGR or grayscale. */
    std::vector<cv::Mat> channels;
    float* data = mean_blob.mutable_cpu_data();
    for (int i = 0; i < num_channels_; ++i) {
    /* Extract an individual channel. */
    cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
    channels.push_back(channel);
    data += mean_blob.height() * mean_blob.width();
    }

    /* Merge the separate channels into a single image. */
    cv::Mat mean;
    cv::merge(channels, mean);

    /* Compute the global mean pixel value and create a mean image
    * filled with this value. */
    cv::Scalar channel_mean = cv::mean(mean);
    mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
    }

    std::vector<float> Classifier::Predict(const cv::Mat& img) {
    Blob<float>* input_layer = net_->input_blobs()[0];
    input_layer->Reshape(1, num_channels_,
    input_geometry_.height, input_geometry_.width);
    /* Forward dimension change to all layers. */
    net_->Reshape();

    std::vector<cv::Mat> input_channels;
    WrapInputLayer(&input_channels);

    Preprocess(img, &input_channels);

    net_->Forward();

    /* Copy the output layer to a std::vector */
    Blob<float>* output_layer = net_->output_blobs()[0];
    const float* begin = output_layer->cpu_data();
    const float* end = begin + output_layer->channels();
    return std::vector<float>(begin, end);
    }

    /* Wrap the input layer of the network in separate cv::Mat objects
    * (one per channel). This way we save one memcpy operation and we
    * don't need to rely on cudaMemcpy2D. The last preprocessing
    * operation will write the separate channels directly to the input
    * layer. */
    void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
    Blob<float>* input_layer = net_->input_blobs()[0];

    int width = input_layer->width();
    int height = input_layer->height();
    float* input_data = input_layer->mutable_cpu_data();
    for (int i = 0; i < input_layer->channels(); ++i) {
    cv::Mat channel(height, width, CV_32FC1, input_data);
    input_channels->push_back(channel);
    input_data += width * height;
    }
    }

    void Classifier::Preprocess(const cv::Mat& img,
    std::vector<cv::Mat>* input_channels) {
    /* Convert the input image to the input image format of the network. */
    cv::Mat sample;
    if (img.channels() == 3 && num_channels_ == 1)
    cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
    else if (img.channels() == 4 && num_channels_ == 1)
    cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
    else if (img.channels() == 4 && num_channels_ == 3)
    cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
    else if (img.channels() == 1 && num_channels_ == 3)
    cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
    else
    sample = img;

    cv::Mat sample_resized;
    if (sample.size() != input_geometry_)
    cv::resize(sample, sample_resized, input_geometry_);
    else
    sample_resized = sample;

    cv::Mat sample_float;
    if (num_channels_ == 3)
    sample_resized.convertTo(sample_float, CV_32FC3);
    else
    sample_resized.convertTo(sample_float, CV_32FC1);

    cv::Mat sample_normalized;
    cv::subtract(sample_float, mean_, sample_normalized);

    /* This operation will write the separate BGR planes directly to the
    * input layer of the network because it is wrapped by the cv::Mat
    * objects in input_channels. */
    cv::split(sample_normalized, *input_channels);

    CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
    == net_->input_blobs()[0]->cpu_data())
    << "Input channels are not wrapping the input layer of the network.";
    }

head.h

  1. #include "caffe/common.hpp"  
    #include "caffe/layers/input_layer.hpp"  
    #include "caffe/layers/inner_product_layer.hpp"  
    #include "caffe/layers/dropout_layer.hpp"  
    #include "caffe/layers/conv_layer.hpp"  
    #include "caffe/layers/relu_layer.hpp"  
    #include "caffe/layers/pooling_layer.hpp"  
    #include "caffe/layers/lrn_layer.hpp"  
    #include "caffe/layers/softmax_layer.hpp"  

    namespace caffe
    {
    extern INSTANTIATE_CLASS(InputLayer);
    extern INSTANTIATE_CLASS(InnerProductLayer);
    extern INSTANTIATE_CLASS(DropoutLayer);
    extern INSTANTIATE_CLASS(ConvolutionLayer);
    REGISTER_LAYER_CLASS(Convolution);
    extern INSTANTIATE_CLASS(ReLULayer);
    REGISTER_LAYER_CLASS(ReLU);
    extern INSTANTIATE_CLASS(PoolingLayer);
    REGISTER_LAYER_CLASS(Pooling);
    extern INSTANTIATE_CLASS(LRNLayer);
    REGISTER_LAYER_CLASS(LRN);
    extern INSTANTIATE_CLASS(SoftmaxLayer);
    REGISTER_LAYER_CLASS(Softmax);
    }

生成

【深度学习之Caffe】将模型测试Classification过程生成动态链接库dll以方便其他项目调用
搞定!

扫码关注微信公众号:路同学
【深度学习之Caffe】将模型测试Classification过程生成动态链接库dll以方便其他项目调用
回复“源码”有此工程的源码。

公众号上也有详解 以及其他关于深度学习的内容将会不断更新~