MIT 线性代数导论 第三讲:矩阵乘法与逆矩阵

为了以后自己看的明白(●’◡’●),我决定对复杂的计算过程不再用Latex插入数学公式了(记得不熟的实在是太费劲了,还是手写好~)

第三讲的主要内容有两个:

  • 四种矩阵乘法的方式
  • 逆矩阵的概念以及计算方式

矩阵乘法(Matrix multiplication)

矩阵相乘例子:
(A(m,n))(B(n,p))=(C(m,p)) \begin{pmatrix} A\\ (m,n) \end{pmatrix} \begin{pmatrix} B\\ (n,p) \end{pmatrix} = \begin{pmatrix} C\\ (m,p) \end{pmatrix}

1、具体到元素的乘法方式

结果矩阵 CC 的某一个元素 CijC_{ij} 是由 AA 矩阵的第 ii 行元素与 BB 矩阵的第 jj 列相乘得到的,使用公式表示如下
Cij=k=1nAi,kBk,j C_{ij}=\sum_{k=1}^{n}A_{i,k}B_{k,j}

这是我们理解矩阵乘法一般的思想,但是在线性代数中,更好的方式是整体,也就是之前所提到的用向量乘的方式理解矩阵相乘,所以就有了接下来的方式

2.行方法

之前我们提到过行向量乘矩阵,可以理解为矩阵中行向量的线性组合,其实矩阵乘法也是如此,将左侧矩阵 AA 看作是多个行向量, 那么矩阵乘法就可以看作是多个行向量乘矩阵 BB ,将结果行向量(行向量乘以矩阵结果仍仍然是行向量)拼在一起就是结果矩阵 CC
简单来说就是BB 中的行向量作为基准,用 AA 中的行向量对其进行线性组合
例如:
MIT 线性代数导论 第三讲:矩阵乘法与逆矩阵
其实就是将矩阵 AA ,也就是将左侧矩阵的每一个行向量去乘右侧的矩阵,那么每一个 AA 的行向量乘矩阵 BB 的结果作为结果矩阵的一个行向量,最后所有的向量乘矩阵计算完成之后就组成结果矩阵了。

3.列方法

同理,如果我们用左侧矩阵 AA 乘右侧矩阵 BB 的每一个列向量,其结果就是结果矩阵 CC 中的对应位置的列向量:
MIT 线性代数导论 第三讲:矩阵乘法与逆矩阵

4.行列向量相乘

结合上面的两种方式,我们可以考虑对于结果矩阵 CC 中的位置为 (i,j)(i,j) 的元素是如何得到的,在第一种方式我们知道是矩阵 AA 的第 ii 行的每一个元素乘以矩阵 BB 的第 jj 列的每一个元素的和,其实从整体行列响亮的角度来看,其实就是 AAii 个行向量乘以 BB 的第 jj 个列向量(行向量乘以列向量结果是一个元素)

矩阵分块乘法

简单的提了一下分块乘法:
(A1A2A3A4)(B1B2B3B4)=(A1B1+A2B3A1B2+A2B4A3B1+A4B3A3B2+A4B4) \begin{pmatrix} A_{1} &A_{2} \\ A_{3} &A_{4} \end{pmatrix} \begin{pmatrix} B_{1} &B_{2} \\ B_{3} &B_{4} \end{pmatrix} = \begin{pmatrix} A_{1}B_{1}+A_{2}B_{3} &A_{1}B_{2}+A_{2}B_{4} \\ A_{3}B_{1}+A_{4}B_{3} &A_{3}B_{2}+A_{4}B_{4} \end{pmatrix}
其中 AABB 均代表矩阵

逆矩阵(Inverse matrix)

矩阵的逆(称为逆矩阵),也就是求解下式:
A1A=I A^{-1}A=I
II 是单位矩阵(identity matrix),首先明确一点,上式是左乘了一个矩阵使之称为单位阵,那么右乘一个矩阵使得结果矩阵成为单位阵那又如何呢?直接给出结果:
A1A=AA1=I A^{-1}A=AA^{-1}=I
也就是说矩阵的逆唯一,当然这里有前提:这是对方阵而言,如果只是普通的矩阵,那显然左逆与右逆 的维数不一样,也就不会相等了。
接下来考虑的问题是对于一个方阵,是否一定存在逆矩阵?
举一个例子:
(1326)X=I \begin{pmatrix} 1 & 3\\ 2 & 6 \end{pmatrix}X=I
是否存在逆矩阵?结果是找不到的,可以这样理解:
首先我们可以发现这个矩阵的列向量是存在倍数关系的,第二列是第一列的2倍。
如果我们用上面列方法来考虑,也就是说矩阵 II 的列向量都是左侧矩阵的列向量的线性组合,也就是说,矩阵 II 的某一列是 k(12)+p(36)k\begin{pmatrix} 1 \\ 2 \end{pmatrix} +p\begin{pmatrix} 3 \\ 6 \end{pmatrix} 这样的结果可以合并为 m(12)m\begin{pmatrix} 1 \\ 2 \end{pmatrix} 显然这个结果肯定不会是单位阵中的某一列(因为特点是一列中只有一个1,其余的元素都是0)

接下来讨论如何求解一个方阵的逆:
一般的方法,就是假设出 A1A^{-1} 中的元素,然后就是一个解线性方程组的过程了,更好的方式是将矩阵放在一起考虑,这个方法叫做高斯-若尔当方法(Guass-Jordan),方法如下:
求解 方阵 AA 的逆
首先构造这样的矩阵:
(A,I) (A,I)
就像增广矩阵一样,在右侧添加一个单位阵,接下来,如果我们对整个矩阵进行一系列行变换使得矩阵中 AA 变为单位阵:
(I,?) (I,?)
那么此时原来的单位阵变成了什么?首先用消元法的思想表示上面的过程:
E(A,I)=(EA,EI)EA=I E(A,I)=(EA, EI),EA=I
这里将E乘到里面是为了更方便理解(可以想一下,左乘矩阵 EE ,是对整个矩阵进行行变换,所以列都是同步变化的)
因为 EA=IEA=I成立,逆是唯一的,所以 EIEI 就应该是 AA 的逆矩阵了。
同时对两个矩阵进行行变换求逆矩阵,就是高斯-若尔当方法的思想
例子:
(13102701)(13100121)(10730121)(IA1) \begin{pmatrix} 1 &3 & \vdots &1 &0 \\ 2& 7 & \vdots &0 &1 \end{pmatrix}\Rightarrow \begin{pmatrix} 1 &3 & \vdots &1 &0 \\ 0& 1 & \vdots &-2 &1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 &0 & \vdots &7 &-3 \\ 0& 1 & \vdots &-2 &1 \end{pmatrix}\Leftrightarrow \begin{pmatrix} I & A^{-1} \end{pmatrix}
以上~