阅读笔记:A Visual Comfort Assessment Approach of Stereoscopic Images based on Random Forest Regressor
基于随机森林回归的立体图像舒适度预测方法
数据库:NBU S3D-VCA和IVY
框图:
输入原始图像,用频谱残差的方法得到saliency图,用光流法得到disparity图,二者线性融合得到3D saliency图,二值化得到VIR图,用随机森林的方法融合视差和图像内容特征,最后预测。
特征种类:
内容特征:图像对比度
灰阶值之差的平方乘以灰度值之差
纹理:
熵值,能量,标准差
mean是整个图像像素的均值。
空间频率:
HF,VF,DF分别表示水平,垂直,对角线的频率。
视差特征
F1~F5分别代表视差大小,分散度,偏度,最大值,最小值。
F6:视差均值。SVIR:对VIR图作形态学操作
视差变化。x:水平梯度值。y:垂直梯度值。
实验部分:
回归方法:随机森林
1.回归方法的选取
2.决策树的数量确定
3.与其他人方法的对比结果
这是在IVY数据库上的实验结果。没有另一个数据库是因为NBU被当作了训练集,这个是测试集。