哈希表
参考:https://www.cnblogs.com/yangecnu/p/Introduce-Hashtable.html
哈希表:
哈希表(hash-table)就是一种以 键-值(key-indexed) 存储数据的结构,我们只要输入待查找值的key,即可查找到其对应的值。
哈希的思路很简单,如果所有的键都是整数,那么就可以使用一个简单的无序数组来实现:将键作为索引,值即为其对应的值,这样就可以快速访问任意键的值。这是对于简单的键的情况,我们将其扩展到可以处理更加复杂的类型的键。
使用哈希查找有两个步骤:
- 使用哈希函数将被查找的键转换为数组的索引。在理想的情况下,不同的键会被转换为不同的索引值,但是在有些情况下我们需要处理多个键被哈希到同一个索引值的情况。所以哈希查找的第二个步骤就是处理冲突
- 处理哈希碰撞冲突。有很多处理哈希碰撞冲突的方法,比如:拉链法和线性探测法。
哈希函数:
哈希查找第一步就是使用哈希函数将键映射成索引。这种映射函数就是哈希函数。如果我们有一个保存0-M数组,那么我们就需要一个能够将任意键转换为该数组范围内的索引(0~M-1)的哈希函数。哈希函数需要易于计算并且能够均匀分布所有键。比如举个简单的例子,使用手机号码后三位就比前三位作为key更好,因为前三位手机号码的重复率很高。再比如使用身份证号码出生年月位数要比使用前几位数要更好。
在实际中,我们的键并不都是数字,有可能是字符串,还有可能是几个值的组合等,所以我们需要实现自己的哈希函数。
哈希函数表示一种映射关系:key ——>哈希函数——>数组索引
拉链法:
通过哈希函数,我们可以将键转换为数组的索引(0-M-1),但是对于两个或者多个键具有相同索引值的情况,我们需要有一种方法来处理这种冲突。
一种比较直接的办法就是,将大小为M 的数组的每一个元素指向一个条链表,链表中的每一个节点都存储散列值为该索引的键值对,这就是拉链法。下图很清楚的描述了什么是拉链法。
图中,”John Smith”和”Sandra Dee” 通过哈希函数都指向了152 这个索引,该索引又指向了一个链表, 在链表中依次存储了这两个字符串。
该方法的基本思想就是选择足够大的M,使得所有的链表都尽可能的短小,以保证查找的效率。
对采用拉链法的哈希实现的查找分为两步,首先是根据散列值找到等一应的链表,然后沿着链表顺序找到相应的键。
线性探测法:
线性探测法是开放寻址法解决哈希冲突的一种方法,基本原理为,使用大小为M的数组来保存N个键值对,其中M>N,我们需要使用数组中的空位解决碰撞冲突。如下图所示:
对照前面的拉链法,在该图中,”Ted Baker” 是有唯一的哈希值153的,但是由于153被”Sandra Dee”占用了。而原先”Snadra Dee”和”John Smith”的哈希值都是152的,但是在对”Sandra Dee”进行哈希的时候发现152已经被占用了,所以往下找发现153没有被占用,所以存放在153上,然后”Ted Baker”哈希到153上,发现已经被占用了,所以往下找,发现154没有被占用,所以值存到了154上。
开放寻址法中最简单的是线性探测法:当碰撞发生时即一个键的散列值被另外一个键占用时,直接检查散列表中的下一个位置即将索引值加1,这样的线性探测会出现三种结果:
- 命中,该位置的键和被查找的键相同
- 未命中,键为空
- 继续查找,该位置和键被查找的键不同。
性能分析:
我们可以看到,哈希表存储和查找数据的时候分为两步,第一步为将键通过哈希函数映射为数组中的索引, 这个过程可以认为是只需要常数时间的。第二步是,如果出现哈希值冲突,如何解决,前面介绍了拉链法和线性探测法下面就这两种方法进行讨论:
对于拉链法,查找的效率在于链表的长度,一般的我们应该保证长度在M/8~M/2之间,如果链表的长度大于M/2,我们可以扩充链表长度。如果长度在0~M/8时,我们可以缩小链表。
对于线性探测法,也是如此,但是动态调整数组的大小需要对所有的值从新进行重新散列并插入新的表中。
不管是拉链法还是散列法,这种动态调整链表或者数组的大小以提高查询效率的同时,还应该考虑动态改变链表或者数组大小的成本。散列表长度加倍的插入需要进行大量的探测, 这种均摊成本在很多时候需要考虑。