hdu 3306 Another kind of Fibonacci
思路: 矩阵快速幂
分析:
1 题目给定另外一种递推式,A(0) = 1 , A(1) = 1 , A(N) = X * A(N - 1) + Y * A(N - 2) (N >= 2).求 S(N) , S(N) = A(0)2 +A(1)2+……+A(n)2
2 那么我们通过这个式子就可以构造出以下的矩阵
代码:
/************************************************
* By: chenguolin *
* Date: 2013-08-28 *
* Address: http://blog.****.net/chenguolinblog *
************************************************/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int MOD = 10007;
const int N = 6;
int n , x , y;
struct Matrix{
int mat[N][N];
Matrix operator*(const Matrix& m)const{
Matrix tmp;
for(int i = 0 ; i < N ; i++){
for(int j = 0 ; j < N ; j++){
tmp.mat[i][j] = 0;
for(int k = 0 ; k < N ; k++)
tmp.mat[i][j] += mat[i][k]*m.mat[k][j]%MOD;
tmp.mat[i][j] %= MOD;
}
}
return tmp;
}
};
void init(Matrix &m){
memset(m.mat , 0 , sizeof(m.mat));
x %= MOD , y %= MOD;
m.mat[0][0] = m.mat[5][0] = x*x%MOD;
m.mat[0][1] = m.mat[5][1] = 2*x*y%MOD;
m.mat[0][4] = m.mat[5][4] = y*y%MOD;
m.mat[1][0] = x ; m.mat[1][1] = y;
m.mat[2][2] = x ; m.mat[2][3] = y;
m.mat[3][2] = m.mat[4][0] = 1;
m.mat[5][5] = 1;
}
int Pow(Matrix m){
Matrix ans;
memset(ans.mat , 0 , sizeof(ans.mat));
for(int i = 0 ; i < N ; i++)
ans.mat[i][i] = 1;
n--;
while(n){
if(n%2)
ans = ans*m;
n /= 2;
m = m*m;
}
int sum = 0;
sum += ans.mat[5][0]%MOD;
sum += ans.mat[5][1]%MOD;
sum += ans.mat[5][2]%MOD;
sum += ans.mat[5][3]%MOD;
sum += ans.mat[5][4]%MOD;
sum += ans.mat[5][5]*2%MOD;
return sum%MOD;
}
int main(){
Matrix m;
while(scanf("%d%d%d" , &n , &x , &y) != EOF){
init(m);
printf("%d\n" , Pow(m));
}
return 0;
}