24式加速你的Python
作者 | 梁云1991
来源 Python与算法之美
一、分析代码运行时间
第1式,测算代码运行时间
平凡方法
快捷方法(jupyter环境)
第2式,测算代码多次运行平均时间
平凡方法
快捷方法(jupyter环境)
第3式,按调用函数分析代码运行时间
平凡方法
快捷方法(jupyter环境)
第4式,按行分析代码运行时间
平凡方法
快捷方法(jupyter环境)
二、加速你的查找
第5式,用set而非list进行查找
低速方法
高速方法
第6式,用dict而非两个list进行匹配查找
低速方法
高速方法
三、加速你的循环
第7式,优先使用for循环而不是while循环
低速方法
高速方法
第8式,在循环体中避免重复计算
低速方法
高速方法
四、加速你的函数
第9式,用循环机制代替递归函数
低速方法
高速方法
第10式,用缓存机制加速递归函数
低速方法
高速方法
第11式,用numba加速Python函数
低速方法
高速方法
五、使用标准库函数进行加速
第12式,使用collections.Counter加速计数
低速方法
高速方法
第13式,使用collections.ChainMap加速字典合并
低速方法
高速方法
六、使用高阶函数进行加速
第14式,使用map代替推导式进行加速
低速方法
高速方法
第15式,使用filter代替推导式进行加速
低速方法
高速方法
七、使用numpy向量化进行加速
第16式,使用np.array代替list
低速方法
高速方法
第17式,使用np.ufunc代替math.func
低速方法
高速方法
第18式,使用np.where代替if
低速方法
高速方法
八、加速你的Pandas
第19式,使用csv文件读写代替excel文件读写
低速方法
高速方法
第20式,使用pandas多进程工具pandarallel
低速方法
高速方法
九、使用Dask进行加速
第21式,使用dask加速dataframe
低速方法
高速方法
第22式,使用dask.delayed进行加速
低速方法
高速方法
十、应用多线程多进程加速
第23式,应用多线程加速IO密集型任务
低速方法
高速方法
第24式,应用多进程加速CPU密集型任务
低速方法
高速方法
(*本文为 AI科技大本营转载文章,转载请联系原作者)
◆
精彩推荐
◆
2019 中国大数据技术大会(BDTC)历经十一载,再度火热来袭!豪华主席阵容及百位技术专家齐聚,15 场精选专题技术和行业论坛,超强干货+技术剖析+行业实践立体解读,深入解析热门技术在行业中的实践落地。【早鸟票】与【特惠学生票】限时抢购,扫码了解详情!
推荐阅读
快手王华彦:端上视觉技术的极致效率及其短视频应用实践 | AI ProCon 2019
中文预训练ALBERT模型来了:小模型登顶GLUE,Base版模型小10倍、速度快1倍
100多次竞赛后,他研发了一个几乎可以解决所有机器学习问题的框架
NLP被英语统治?打破成见,英语不应是「自然语言」同义词
TensorFlow2.0正式版发布,极简安装TF2.0(CPU&GPU)教程
肖仰华:知识图谱构建的三要素、三原则和九大策略 | AI ProCon 2019
AI落地遭“卡脖子”困境:为什么说联邦学习是解决良方?
限时早鸟票 | 2019 中国大数据技术大会(BDTC)超豪华盛宴抢先看!
你点的每个“在看”,我都认真当成了喜欢