kNN算法实现识别手写数字
kNN算法实现识别手写数字并将结果写入文件Result.txt
数据集为二维点阵图(32*32)
from os import listdir
from numpy import *
# 分类器
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
# 从文件中读取
def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j]=int(lineStr[j])
return returnVect
// testvector = img2vector('C:/Users/Aurora/Desktop/机器学习/machinelearninginaction/Ch02/testDigits/0_12.txt')
// print(testvector[0,33:1024])
# 手写识别具体实现
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('C:/Users/Aurora/Desktop/机器学习/machinelearninginaction/Ch02/trainingDigits')
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0] # 提取第一部分,0_12
classNumstr = int(fileStr.split('_')[0]) # 提取0_12的第一部分,0
hwLabels.append(classNumstr)
trainingMat[i,:] = img2vector('C:/Users/Aurora/Desktop/机器学习/machinelearninginaction/Ch02/trainingDigits/%s'\
% fileNameStr)
testFileList = listdir('C:/Users/Aurora/Desktop/机器学习/machinelearninginaction/Ch02/testDigits')
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumstr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('C:/Users/Aurora/Desktop/机器学习/ \
machinelearninginaction/Ch02/trainingDigits/%s'% fileNameStr)
classifierResult = classify0(vectorUnderTest,trainingMat,hwLabels,3)
result = ('No.%d ,the classifier came back with : %d , the real anwser is : %d '\
% (i+1,classifierResult,classNumstr))
fileSave = open("Result.txt",'a')
fileSave.write(result+'\n')
fileSave.close()
if(classifierResult != classNumstr):
errorCount += 1.0
print('the total number of errors is : %d' %errorCount)
print('the total error rate is : %f'%(errorCount/float(mTest)))
# 测试
handwritingClassTest()
运行结果: