卷毛0基础学习Golang-并发编程,01 什么是并发
卷毛0基础学习Golang-并发编程,什么是并发
Go并发编程
概述
简而言之,所谓并发编程是指在一台处理器上“同时”处理多个任务。
随着硬件的发展,并发程序变得越来越重要。Web服务器会一次处理成千上万的请求。平板电脑和手机app在渲染用户画面同时还会后台执行各种计算任务和网络请求。即使是传统的批处理问题–读取数据,计算,写输出–现在也会用并发来隐藏掉I/O的操作延迟以充分利用现代计算机设备的多个核心。计算机的性能每年都在以非线性的速度增长。
宏观的并发是指在一段时间内,有多个程序在同时运行。
并发在微观上,是指在同一时刻只能有一条指令执行,但多个程序指令被快速的轮换执行,使得在宏观上具有多个进程同时执行的效果,但在微观上并不是同时执行的,只是把时间分成若干段,使多个程序快速交替的执行。
并发(concurrency):
指在同一时刻只能有一条指令执行,但多个进程指令被快速的轮换执行,使得在宏观上具有多个进程同时执行的效果,但在微观上并不是同时执行的,只是把时间分成若干段,通过cpu时间片轮转使多个进程快速交替的执行。
以咖啡机举例子
- 两个队列同时使用两台咖啡机 (真正的多任务)
- 并发是两个队列交替使用一台咖啡机 ( 假 的多任务),只是这个交替速度飞快,在我们眼里,就是好像一台咖啡机能够处理两个队列任务。
常见并发编程技术
进程并发
程序,是指编译好的二进制文件,在磁盘上,不占用系统资源(cpu、内存、打开的文件、设备、锁…)
进程,是一个抽象的概念,与操作系统原理联系紧密。进程是活跃的程序,占用系统资源。在内存中执行。(程序运行起来,产生一个进程)
进程状态
进程基本的状态有5种。分别为初始态,就绪态,运行态,挂起态与终止态。其中初始态为进程准备阶段,常与就绪态结合来看。
在使用进程 实现并发时会出现什么问题呢?
1.系统开销比较大,占用资源比较多,开启进程数量比较少。
2. 在unix/linux系统下,还会产生“孤儿进程”和“僵尸进程”。
通过前面查看操作系统的进程信息,我们知道在操作系统中,可以产生很多的进程。在unix/linux系统中,正常情况下,子进程是通过父进程fork创建的,子进程再创建新的进程。
并且父进程永远无法预测子进程 到底什么时候结束。 当一个 进程完成它的工作终止之后,它的父进程需要调用系统调用取得子进程的终止状态。
- 孤儿进程
孤儿进程: 父进程先于子进程结束,则子进程成为孤儿进程,子进程的父进程成为init进程,称为init进程领养孤儿进程。 - 僵尸进程
僵尸进程: 进程终止,父进程尚未回收,子进程残留资源(PCB)存放于内核中,变成僵尸(Zombie)进程。
线程并发
什么是线程
LWP:light weight process 轻量级的进程,本质仍是进程 (Linux下)
进程:独立地址空间,拥有PCB
线程:有独立的PCB,但没有独立的地址空间(共享)
区别:在于是否共享地址空间。独居(进程);合租(线程)。
- 线程:最小的执行单位
- 进程:最小分配资源单位,可看成是只有一个线程的进程。
Windows系统下,可以直接忽略进程的概念,只谈线程。因为线程是最小的执行单位,是被系统独立调度和分派的基本单位。而进程只是给线程提供执行环境。
线程同步
同步即协同步调,按预定的先后次序运行。
线程同步,指一个线程发出某一功能调用时,在没有得到结果之前,该调用不返回。同时其它线程为保证数据一致性,不能调用该功能。
举例: 内存中100字节,线程T1欲填入全1, 线程T2欲填入全0。但如果T1执行了50个字节失去cpu,T2执行,会将T1写过的内容覆盖。当T1再次获得cpu继续 从失去cpu的位置向后写入1,当执行结束,内存中的100字节,既不是全1,也不是全0。
产生的现象叫做“与时间有关的错误”(time related)。为了避免这种数据混乱,线程需要同步。
“同步”的目的,是为了避免数据混乱,解决与时间有关的错误。实际上,不仅线程间需要同步,进程间、信号间等等都需要同步机制。
因此,所有“多个控制流,共同操作一个共享资源”的情况,都需要同步。
锁的应用
互斥量mutex
Linux中提供一把互斥锁mutex(也称之为互斥量)。
每个线程在对资源操作前都尝试先加锁,成功加锁才能操作,操作结束解锁。
通过“锁”就将资源的访问变成互斥操作,而后与时间有关的错误也不会再产生了。
但,应注意:同一时刻,只能有一个线程持有该锁。
当A线程对某个全局变量加锁访问,B在访问前尝试加锁,拿不到锁,B阻塞。C线程不去加锁,而直接访问该全局变量,依然能够访问,但会出现数据混乱。
所以,互斥锁实质上是操作系统提供的一把“建议锁”(又称“协同锁”),建议程序中有多线程访问共享资源的时候使用该机制。但,并没有强制限定。
因此,即使有了mutex,如果有线程不按规则来访问数据,依然会造成数据混乱。
读写锁
与互斥量类似,但读写锁允许更高的并行性。其特性为:写独占,读共享。
- 读写锁特性:
- 读写锁是“写模式加锁”时, 解锁前,所有对该锁加锁的线程都会被阻塞。
- 读写锁是“读模式加锁”时, 如果线程以读模式对其加锁会成功;如果线程以写模式加锁会阻塞。
- 读写锁是“读模式加锁”时, 既有试图以写模式加锁的线程,也有试图以读模式加锁的线程。那么读写锁会阻塞随后的读模式锁请求。优先满足写模式锁。读锁、写锁并行阻塞,写锁优先级高
读写锁也叫共享-独占锁。当读写锁以读模式锁住时,它是以共享模式锁住的;当它以写模式锁住时,它是以独占模式锁住的。写独占、读共享。
读写锁非常适合于对数据结构读的次数远大于写的情况。
协程并发
协程:coroutine。也叫轻量级线程。
协程最大的优势在于“轻量级”。可以轻松创建上万个而不会导致系统资源衰竭。而线程和进程通常很难超过1万个。这也是协程别称“轻量级线程”的原因。
一个线程中可以有任意多个协程,但某一时刻只能有一个协程在运行,多个协程分享该线程分配到的计算机资源。
在协程中,调用一个任务就像调用一个函数一样,消耗的系统资源最少!但能达到进程、线程并发相同的效果。
在一次并发任务中,进程、线程、协程均可以实现。从系统资源消耗的角度出发来看,进程相当多,线程次之,协程最少。
Go并发
Go 在语言级别支持协程,叫goroutine。Go 语言标准库提供的所有系统调用操作(包括所有同步IO操作),都会出让CPU给其他goroutine。这让轻量级线程的切换管理不依赖于系统的线程和进程,也不需要依赖于CPU的核心数量。
Go从语言层面就支持并行。同时,并发程序的内存管理有时候是非常复杂的,而Go语言提供了自动垃圾回收机制。
Go语言中的并发程序主要使用两种手段来实现。goroutine和channel。