大数据每日默写(面试题)整理(持续更新)
2018.10.22
1.抽象类与接口的区别?
1.语法层面上的区别
1)抽象类可以提供成员方法的实现细节,而接口中只能存在public abstract 方法;
2)抽象类中的成员变量可以是各种类型的,而接口中的成员变量只能是public static final类型的;
3)接口中不能含有静态代码块以及静态方法,而抽象类可以有静态代码块和静态方法;
4)一个类只能继承一个抽象类,而一个类却可以实现多个接口。
2.设计层面上的区别
1)抽象类是对一种事物的抽象,即对类抽象,而接口是对行为的抽象。抽象类是对整个类整体进行抽象,包括属性、行为,但是接口却是对类局部(行为)进行抽象。例如将鸟,飞机各定义为一个类,将飞行定义为一个接口。
2)设计层面不同,抽象类作为很多子类的父类,它是一种模板式设计。而接口是一种行为规范,它是一种辐射式设计。对于抽象类,如果需要添加新的方法,可以直接在抽象类中添加具体的实现,子类可以不进行变更;而对于接口则不行,如果接口进行了变更,则所有实现这个接口的类都必须进行相应的改动。
2.构造方法的定义规则
定义时候的基本构成
修饰词 方法名(参数列表){
方法体
}
注意点:1.没有返回值这一项 2.方法名必须与类名保持一致 3.不能被static、final、synchronized、abstract和native修饰。
3.多线程实现的两种方式
第一种方式:通过创建Thread类的子类——让run留在了线程的内部,造成任务与线程的绑定,操作不方便。
第二种方式:创建任务类实现Runnable接口——将run从线程中独立出来。好处:操作更方便,哪个线程想工作,我就把任务交给谁。
4.List接口与Set接口的区别以及常用子类。
List中的元素,有序(元素的顺序与添加元素的顺序一致)、可重复、可为空;
Set中的元素,无序、不重复、只有一个空元素;
Map中的元素,无序、键不重,值可重、可一个空键、多可空值。
List常用子类ArrayList、Vector、LinkedList,其中ArrayList、Vector底层为数组,查询速度快,插入删除速度慢,LinkedList底层为双向链表,查询速度慢,插入删除速度快。Vector线程安全。
Set常用子类HashSet与TreeSet,其中HashSet底层是哈希表;TreeSet底层是二叉树。
Map常用子类HashMap与TreeMap。
补充:
HashMap和HashTable的区别:
HashMap时HashTable的轻量级实现(非线程安全的实现),它们都实现了Map接口,主要区别在于HashMap允许空(null)键值(key),由于非线程安全,效率上高于HashTable。
HashMap允许将null作为一个entry的key或者value,而HashTable不允许。
HashMap去掉了HashTable的contains方法,改成containsValue和containsKey方法。
二者最大的不同是,HashTable的方法是synchronized(线程安全的),而HashMap不是,在多个线程访问HashTable时,不需要自己为它的方法实现同步,而HashMap就必须为之提供外同步。
2018.10.23
HDFS 和YARN 的基本概念。
1 HDFS
分布式文件系统,主/从架构
NameNode 负责管理元数据(文件名称,副本数量,文件位置,块大小)。HDFS 存储是以块存储 默认块大小 128MB,hadoop1 中默认的块大小是64MB。一个节点。
DataNode:主要存储真正的数据,多节点。
secondaryNamenode 辅助节点,用于合并两类文件。
Fsimage ,edits 作为元数据的镜像和操作的日志记录。
在HDFS第一次使用的时候需要对其进行格式化,目的是生成fsimage 和 edits 文件。
2 YARN 资源管理器,操作系统 可以在YARN进行任务的运行,YARN为这些运行的任务分配资源,管理。
主节点: resourceManager 负责全部集群中的资源管理,和任务分配
从节点: nodeManager 负责每个机器上的资源管理
2018.10.23
hadoop常用配置文件位置及其含义。
2018.10.24
1.HDFS的副本复制策略
hadoop官网描述如下:
对于常见情况,当复制因子为3时,HDFS的放置策略是在编写器位于datanode上时将一个副本放在本地计算机上,否则放在随机datanode上,另一个副本放在另一个(远程)机架上的节点上,最后一个在同一个远程机架的不同节点上。此策略可以减少机架间写入流量,从而提高写入性能。机架故障的可能性远小于节点故障的可能性; 此策略不会影响数据可靠性和可用性保证。但是,它确实减少了读取数据时使用的聚合网络带宽,因为块只放在两个唯一的机架而不是三个。使用此策略时,文件的副本不会均匀分布在机架上。三分之一的副本位于一个节点上,三分之二的副本位于一个机架上,另外三分之一均匀分布在剩余的机架上。此策略可提高写入性能,而不会影响数据可靠性或读取性能。
如果复制因子大于3,则随机确定第4个及以下副本的放置,同时保持每个机架的副本数量低于上限(基本上是(副本-1)/机架+ 2)。
由于NameNode不允许DataNode具有同一块的多个副本,因此创建的最大副本数是此时DataNode的总数。
在将存储类型和存储策略的支持添加到HDFS之后,除了上述机架感知之外,NameNode还会考虑策略以进行副本放置。NameNode首先根据机架感知选择节点,然后检查候选节点是否具有与文件关联的策略所需的存储。如果候选节点没有存储类型,则NameNode将查找另一个节点。如果在第一个路径中找不到足够的节点来放置副本,则NameNode会在第二个路径中查找具有回退存储类型的节点。
此处描述的当前默认副本放置策略是正在进行的工作。
概括为:
2.HDFS写数据流程,画图加文字描述。
1.客户端向namenode请求上传文件,namenode检测该文件是否已存在,父目录是否存在,然后返回是否可以上传。
2.客户端请求上传第一个block,namenode返回三个节点(dn1,dn2,dn3)。
3.客户端向dn1请求上传数据,dn1收到请求后会调用dn2,dn2调用dn3,建立传输通道,dn1、dn2、dn3逐级应答。
4.客户端开始往dn1上传第一个block(先从磁盘读取放到一个本地内存缓存),以packet为单位。dn1收到一个block就会传给dn2,dn2传给dn3。dn1每传完一个packet会被放入一个应答队列等待应答。
5.当一个block传输完成之后,客户端再次向namenode请求上传第二、第三个block,重复上面的步骤(2-4步),直至文件上传完成。
HDFS读数据流程
文字描述:
1 客户端通过向namenode请求下载文件 ,namenode 收到请求之后查询元数据信息,找到datanode数据块的信息。
2 客户端挑选一台就近的datanode,进行请求数据。
3 datanode开始传输数据给客户端,是以packet 为单位进行读取。
4 客户端 接收packet 数据,先在本地缓存,最后写入到目标文件。
3.NameNode与DataNode的工作机制。
NameNode工作机制
1.第一次启动:第一次启动都需要格式化nameNode ,创建fsimage,edits. 第一次启动只需要加载fsiamge。
2.如果不是第一次启动: 直接加载edits ,fsimage镜像文件 ,合并成一个新的fsimage 文件,再创建edits 文件记录新的操作行为。
启动的过程中,会存在30秒钟等待时间 ,这个等待的时间就是安全模式。
DataNode工作机制
文字描述:
1.一个数据块在datanode上是以文件形式存储在磁盘上的,包括了两个文件,一个数据本身,一个是元数据包 包括数据块的长度,,数据块的校验和,由于HDFS上的数据是不允许被重复上传的所以在上传之前会对上传的数据进行检查 ,时间戳。
2.DataNode启动后会向nameNode进行注册,通过后,会周期性的向namenode上报自己的datanode上的块信息。
3.心跳报告,每3秒钟向nameNode进行汇报,心跳的返回结果中带有NameNode 带给该datanode复制数据块,移动数据块的命令, 如果说超过了10分钟datanode没有响应 ,则就会认为这个datanode节点不可用,会选择其他的机器。
2018.10.26
如果NameNode意外终止,secondaryNameNode的工作是什么?它是如何工作的?
secondaryNameNode
1.并非NameNode的热备;
2.辅助NameNode,分担其工作量;
3.定期合并fsimage和edits,推送给NameNode;
4.在紧急情况下,可辅助恢复NameNode。
2018.10.28
HDFS安全模式
在系统的正常操作期间,namenode会在内存中保留所有块位置的映射信息。在安全模式下,各个datanode会向namenode发送最新的块列表信息,namenode了解到足够多的块位置信息之后,即可高效运行文件系统。
如果满足“最小副本条件”,namenode会在30秒钟之后就退出安全模式。所谓的最小副本条件指的是在整个文件系统中99.9%的块满足最小副本级别(默认值:dfs.replication.min=1)。在启动一个刚刚格式化的HDFS集群时,因为系统中还没有任何块,所以namenode不会进入安全模式。
2018.10.30
Writable序列化(Hadoop序列化)与java序列化的区别
1.java序列化的时候会保存类的相关和依赖关系等类的基本信息,但是hadoop序列化的时候不会保存类的信息只会保存字段值。
2.java反序列化相当于每次重新创建一个对象,而Hadoop反序列化的时候是重用对象的,会降低创建对象的资源消耗。
3.Hadoop序列化中定制序列化格式很容易,java比较困难。
4.Hadoop序列化后的数据量小,java序列化后的数据量大。
5.序列化/反序列化方式不同。
MapReduce工作流程(shuffle流程)
2018.11.05
job在yarn上提交流程
2018.11.07
zookeeper选举(投票)机制
1.没有数据
通过myid给自己投票,根据myid的大小决定票数(比如myid为1,就给自己投1票),谁的票数多,谁就是leader,其余的为follower。半数以上的节点运行成功之后,才提供服务。
2.有数据
根据xid数据的更新版本号为标准,xid最大的为leader(因为follower要同步leader上的数据,所以要确保leader的数据为最新版本),如果xid一样则判断myid的票数。
HA 高可用原理
所谓HA(high available),即高可用(7*24小时不中断服务)。实现高可用最关键的策略是消除单点故障。
Active standby 解决了namenode 单点故障。
存在的服务 : zookeeper(解决一致性问题) ; journalnode(解决edits同步问题); zkfc(解决切换问题,负责监测)。
同步: 元数据(edits ,fsimage ), journalnode 节点,同步edits 编辑日志 。集群中安全性得到了保证,但是一致性却减弱了,为了解决一致性的问题,必须存在zookeeper 。
切换机制: 首先要监控到 namenode 挂了,才能进行切换。如何知道挂掉了: 通过ZKFC RPC 调用监控namenode ,一旦namenode挂掉了,zookeeper 就会通知另外一个namenode 的zkfc 进程启动 standby切换为active,在切换之前会先杀掉之前的active(通过执行一个ssh远程调用)。