转载请注明出处:http://blog.****.net/ouyangying123/article/details/70850533
本文章主要进行dlib中....\dlib-18.18\examples下的三个例子的实现。
本小白用的是:VS2013 + dlib18.18 + opencv2.4.11
1.opencv用于读取数据源(待测图片、视频、摄像机等)。
2.dlib用于人脸检测,特征点检测等。
3.dlib环境配置在上一篇文章已介绍,接下来加上opencv的环境即可运行:
5.一定要是Release模式下,Debug模式的摄像机一帧的检测速度慢到难以置信。
Opencv配置
下载opencv,配置属性如下:
VC++目录->包含目录:...\opencv\build\include
VC++目录->库目录:...\opencv\build\x86\vc12\lib (vs2013 对应vc12 x86对应win32系统)
链接器->输入->附加依赖项(release模式):
opencv_calib3d2411.lib
opencv_contrib2411.lib
opencv_core2411.lib
opencv_features2d2411.lib
opencv_flann2411.lib
opencv_gpu2411.lib
opencv_highgui2411.lib
opencv_imgproc2411.lib
opencv_legacy2411.lib
opencv_ml2411.lib
opencv_nonfree2411.lib
opencv_objdetect2411.lib
opencv_ocl2411.lib
opencv_photo2411.lib
opencv_stitching2411.lib
opencv_superres2411.lib
opencv_ts2411.lib
opencv_video2411.lib
opencv_videostab2411.lib
三个例子:
face_detection_ex :图像人脸检测
copy文件....\dlib-18.18\examples\face_detection_ex .cpp
上代码:
- #include <dlib/image_processing/frontal_face_detector.h>
- #include <dlib/gui_widgets.h>
- #include <dlib/image_io.h>
- #include <iostream>
-
- using namespace dlib;
- using namespace std;
-
-
- int main(int argc, char** argv)
- {
- try
- {
- if (argc == 1)
- {
- cout << "Give some image files as arguments to this program." << endl;
- return 0;
- }
-
- frontal_face_detector detector = get_frontal_face_detector();
- image_window win;
-
- // Loop over all the images provided on the command line.
- for (int i = 1; i < argc; ++i)
- {
- cout << "processing image " << argv[i] << endl;
- array2d<unsigned char> img;
- load_image(img, argv[i]);
-
- pyramid_up(img);
-
- // Now tell the face detector to give us a list of bounding boxes
- // around all the faces it can find in the image.
- std::vector<rectangle> dets = detector(img);
-
- cout << "Number of faces detected: " << dets.size() << endl;
- // Now we show the image on the screen and the face detections as
- // red overlay boxes.
- win.clear_overlay();
- win.set_image(img);
- win.add_overlay(dets, rgb_pixel(255,0,0));
-
- cout << "Hit enter to process the next image..." << endl;
- cin.get();
- }
- }
- catch (exception& e)
- {
- cout << "\nexception thrown!" << endl;
- cout << e.what() << endl;
- }
- system("pause");
- }
右键生成后,把faces文件夹(...\dlib-18.18\examples\faces)复制到该项目的Release文件夹下,使用命令行进入该项目的Release目录下,运行该命令:
face_detection_ex.exe faces/2008_001322.jpg
上结果:

face_landmark_detection_ex :图像人脸特征点提取
copy文件....\dlib-18.18\examples\face_landmark_detection_ex.cpp
上代码:
- #include <dlib/image_processing/frontal_face_detector.h>
- #include <dlib/image_processing/render_face_detections.h>
- #include <dlib/image_processing.h>
- #include <dlib/gui_widgets.h>
- #include <dlib/image_io.h>
- #include <dlib/opencv.h>
- #include <iostream>
-
- #include <opencv2/opencv.hpp>
- using namespace dlib;
- using namespace std;
-
-
-
- int main(int argc, char** argv)
- {
- try
- {
- // This example takes in a shape model file and then a list of images to
- // process. We will take these filenames in as command line arguments.
- // Dlib comes with example images in the examples/faces folder so give
- // those as arguments to this program.
- if (argc == 1)
- {
- cout << "Call this program like this:" << endl;
- cout << "./face_landmark_detection_ex shape_predictor_68_face_landmarks.dat faces/*.jpg" << endl;
- cout << "\nYou can get the shape_predictor_68_face_landmarks.dat file from:\n";
- cout << "http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2" << endl;
- return 0;
- }
- std::cout <<"argc:"<< argc << std::endl;
- // We need a face detector. We will use this to get bounding boxes for
- // each face in an image.
- frontal_face_detector detector = get_frontal_face_detector();
- // And we also need a shape_predictor. This is the tool that will predict face
- // landmark positions given an image and face bounding box. Here we are just
- // loading the model from the shape_predictor_68_face_landmarks.dat file you gave
- // as a command line argument.
- shape_predictor sp;
- std::cout << "argv[1]:"<< argv[1] << std::endl;
- deserialize(argv[1]) >> sp;
-
-
- image_window win;// win_faces;
- // Loop over all the images provided on the command line.
- for (int i = 2; i < argc; ++i)
- {
- cout << "processing image " << argv[i] << endl;
- array2d<rgb_pixel> img;
- load_image(img, argv[i]);
- // Make the image larger so we can detect small faces.
- pyramid_up(img);
-
- // Now tell the face detector to give us a list of bounding boxes
- // around all the faces in the image.
- std::vector<rectangle> dets = detector(img);
- cout << "Number of faces detected: " << dets.size() << endl;
-
- // Now we will go ask the shape_predictor to tell us the pose of
- // each face we detected.
- std::vector<full_object_detection> shapes;
- for (unsigned long j = 0; j < dets.size(); ++j)
- {
- full_object_detection shape = sp(img, dets[j]);
- cout << "number of parts: "<< shape.num_parts() << endl;
- cout << "pixel position of first part: " << shape.part(0) << endl;
- cout << "pixel position of second part: " << shape.part(1) << endl;
- // You get the idea, you can get all the face part locations if
- // you want them. Here we just store them in shapes so we can
- // put them on the screen.
- shapes.push_back(shape);
- cv::Mat temp = dlib::toMat(img);
-
- for (int k = 0; k < 68; ++k){
- circle(temp, cvPoint(shapes[j].part(k).x(), shapes[j].part(k).y()), 3, cv::Scalar(0, 0, 255), -1);
- }
- }
-
- // Now let's view our face poses on the screen.
- win.clear_overlay();
- win.set_image(img);
- //win.add_overlay(render_face_detections(shapes));
-
- //// We can also extract copies of each face that are cropped, rotated upright,
- //// and scaled to a standard size as shown here:
- //dlib::array<array2d<rgb_pixel> > face_chips;
- //extract_image_chips(img, get_face_chip_details(shapes), face_chips);
- //win_faces.set_image(tile_images(face_chips));
-
- cout << "Hit enter to process the next image..." << endl;
- cin.get();
- }
- }
- catch (exception& e)
- {
- cout << "\nexception thrown!" << endl;
- cout << e.what() << endl;
- }
- system("pause");
- }
把shape_predictor_68_face_landmarks.dat文件 和 faces文件夹(...\dlib-18.18\examples\faces)复制到该项目的Release文件夹下,使用命令行进入该项目的Release目录下,运行该命令:
face_landmark_detection_ex.exe shape_predictor_68_face_landmarks.dat faces/2008_001322.jpg
上结果:

webcam_face_pose_ex: 摄像机人脸特征点提取
copy文件....\dlib-18.18\examples\webcam_face_pose_ex.cpp
把shape_predictor_68_face_landmarks.dat文件复制到webcam_face_pose_ex.cpp所在目录下
上代码:(需要有摄像头,添加了使用opencv画点的代码)
其中
cap.set(CV_CAP_PROP_FRAME_WIDTH, 640);
cap.set(CV_CAP_PROP_FRAME_HEIGHT, 480);
用于设置摄像头分辨率。
#define RATIO 1
#define SKIP_FRAMES 2
用于加速检测
- #include <dlib/opencv.h>
- #include <opencv2/opencv.hpp>
- #include <dlib/image_processing/frontal_face_detector.h>
- #include <dlib/image_processing/render_face_detections.h>
- #include <dlib/image_processing.h>
- #include <dlib/gui_widgets.h>
-
- using namespace dlib;
- using namespace std;
-
- #define RATIO 1
- #define SKIP_FRAMES 2
- int main()
- {
- try
- {
- cv::VideoCapture cap(0);
- image_window win;
- //cap.set(CV_CAP_PROP_FRAME_WIDTH, 640);
- //cap.set(CV_CAP_PROP_FRAME_HEIGHT, 480);
- // Load face detection and pose estimation models.
- frontal_face_detector detector = get_frontal_face_detector();
- shape_predictor pose_model;
- deserialize("shape_predictor_68_face_landmarks.dat") >> pose_model;
-
- int count = 0;
- std::vector<rectangle> faces;
- // Grab and process frames until the main window is closed by the user.
- while (!win.is_closed())
- {
- // Grab a frame
- cv::Mat img,img_small;
- cap >> img;
- cv::resize(img, img_small, cv::Size(), 1.0 / RATIO, 1.0 / RATIO);
-
- cv_image<bgr_pixel> cimg(img);
- cv_image<bgr_pixel> cimg_small(img_small);
-
- // Detect faces
- if (count++ % SKIP_FRAMES == 0){
- faces = detector(cimg_small);
- }
- // Find the pose of each face.
- std::vector<full_object_detection> shapes;
- for (unsigned long i = 0; i < faces.size(); ++i){
- rectangle r(
- (long)(faces[i].left() * RATIO),
- (long)(faces[i].top() * RATIO),
- (long)(faces[i].right() * RATIO),
- (long)(faces[i].bottom() * RATIO)
- );
- shapes.push_back(pose_model(cimg, r));
- for (int k = 0; k < 68; ++k){
- circle(img, cvPoint(shapes[i].part(k).x(), shapes[i].part(k).y()), 3, cv::Scalar(0, 0, 255), -1);
- }
- }
- std::cout << "count:" << count << std::endl;
- // Display it all on the screen
- win.clear_overlay();
- win.set_image(cimg);
- win.add_overlay(render_face_detections(shapes));
- }
- }
- catch (serialization_error& e)
- {
- cout << "You need dlib's default face landmarking model file to run this example." << endl;
- cout << "You can get it from the following URL: " << endl;
- cout << " http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2" << endl;
- cout << endl << e.what() << endl;
- }
- catch (exception& e)
- {
- cout << e.what() << endl;
- }
- system("pause");
- }
直接运行即可得到结果:
附上参考链接: