对numpy中的linespace的理解
文档地址:https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html#numpy.linspace
先贴出说明文档内的部分内容:
numpy.linspace
numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)[source]
Return evenly spaced numbers over a specified interval.
Returns num evenly spaced samples, calculated over the interval [start, stop].
The endpoint of the interval can optionally be excluded.
Parameters:
start : scalar
The starting value of the sequence.
stop : scalar
The end value of the sequence, unless endpoint is set to False. In that case, the sequence consists of all but the last of num + 1 evenly spaced samples, so that stop is excluded. Note that the step size changes when endpoint is False.
num : int, optional
Number of samples to generate. Default is 50. Must be non-negative.
endpoint : bool, optional
If True, stop is the last sample. Otherwise, it is not included. Default is True.
retstep : bool, optional
If True, return (samples, step), where step is the spacing between samples.
dtype : dtype, optional
The type of the output array. If dtype is not given, infer the data type from the other input arguments.
New in version 1.9.0.
Returns:
samples : ndarray
There are num equally spaced samples in the closed interval [start, stop] or the half-open interval [start, stop) (depending on whether endpoint is True or False).
step : float, optional
Only returned if retstep is True
Size of spacing between samples.
See also
arange
Similar to linspace, but uses a step size (instead of the number of samples).
logspace
Samples uniformly distributed in log space.
numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
该方法的作用就是在start和stop之间产生num个线性向量,每个向量之间的距离是相同的(线性等分向量)。
例:
c=numpy.linspace(-3,3,100)
d=numpy.linspace(-3,3,500)
e=numpy.linspace(-3,3,1000)
fig,axes=plt.subplots(1,3,figsize=(15,4))
f=(c,d,e)
for data,ax in zip(f,axes):
ax.plot(data)
plt.show()