UA MATH566 统计理论 QE练习 位置变换后的指数分布
2016年1月第六题

Part a
Joint likelihood is
L(θ)=exp(−i=1∑n(X1−θ))=exp(nθ−i=1∑nX1)I(X(1)≥θ)
Compute likelihood ratio
L(θ∣Y)L(θ∣X)=exp(nθ−∑i=1nY1)I(Y(1)≥θ)exp(nθ−∑i=1nX1)I(X(1)≥θ)=exp(i=1∑nYi−i=1∑nXi)I(Y(1)≥θ)I(X(1)≥θ)
To make likelihood ration independent of θ,
X(1)=Y(1)
So X(1) is minimal sufficient statistics.
Part b
EX=∫θ∞xe−(x−θ)dx=θ+1=Xˉ⇒θ^MME=Xˉ−1
Part c
Notice if θ>X(1), L(θ)=0. To make L(θ) as greater as possible, θ≤X(1). Since L(θ) is increasing on θ, when θ^MLE=X(1)
Part d
Compute
E[θ^MME]=E[Xˉ−1]=θVar(θ^MME)=Var(Xˉ)=n1
By the property of order statistics, density of X1 is
fX(1)=ne−n(x−θ)
Compute
EX(1)=∫θ∞nxe−n(x−θ)dx=nnθ+1EX(1)2=∫θ∞nx2e−n(x−θ)dx=n2n2θ2+2nθ+2Var(X(1))=EX(1)2−EX(1)=n21MSE(X(1))=bias2+n21=n22
Part e
By Lehmann-Scheffe theorem, E[Xˉ−1∣X(1)] will be better. Or X(1)−1/n.
2018年5月第六题

Part a
Joint likelihood function is
L(λ,θ)=i=1∏nf(Xi∣λ,θ)=λnexp(−λi=1∑n(Xi−θ))I(X(1)>θ)
Consider two samples {Xi}i=1n and {Yi}i=1n,
L(λ,θ∣Y)L(λ,θ∣X)=λnexp(−λ∑i=1n(Yi−θ))I(Y(1)>θ)λnexp(−λ∑i=1n(Xi−θ))I(X(1)>θ)=I(Y(1)>θ)I(X(1)>θ)exp(−λi=1∑n(Yi−Xi))
To make this likelihood ratio independent of parameters,
X(1)=Y(1), i=1∑nXi=i=1∑nYi
Let T1(X)=X(1), T2(X)=∑i=1nXi and they are minimal sufficient statistics.
Part b
If λ=1,
fX(x)=e−(x−θ),x>θ, FX(x)=∫θxe−(s−θ)ds=1−e−(x−θ),x>θ
Compute
P(X(1)≤x)=P(min(X1,⋯,Xn)≤x)=1−P(min(X1,⋯,Xn)>x)=1−[1−F(x)]nfX(1)(x)=n[1−F(x)]n−1f(x)=ne−(n−1)(x−θ)e−(x−θ)=ne−n(x−θ)
This means X(1)∼θ+Gamma(1,n)
Part c
Define Q=2n(X(1)−θ). By this location-scale transformation, Q∼χ22=dΓ(1,21). Let χy,22 and χ1−α+y,22 denote y and 1−α+y quantile of χ22.
P(χy,22≤Q≤χ1−α+y,22)=1−αP(X(1)−2nχy,22≤θ≤X(1)−2nχ1−α+y,22)=1−α
Notice the length of confidential interval is
L=2nχ1−α+y,22−χy,22
Let Z denote standard normal variable. By normal approximation of chi-square distribution (see UA MATH564 概率论VI 数理统计基础3 卡方分布的正态近似)
L≈2n2+2Z1−α+y−(2+2Zy)=nZ1−α+y−Zy
Notice standard normal distribution is symmetric on y-axis, so the shortest length should be y=2α. Hence the shortest confidential interval is
P(X(1)−2nχ2α,22≤θ≤X(1)−2nχ1−2α,22)=1−α
Part d
Posterior kernel of θ is
π(θ∣X)∝exp(−i=1∑n(Xi−θ))
Compute
∫01θexp(−i=1∑n(xi−θ))dθ=n1∫01θdexp(−i=1∑n(xi−θ))=n1θexp(−i=1∑n(xi−θ))∣01−n1∫01exp(−i=1∑n(xi−θ))dθ=n2n−1exp(n−i=1∑nXi)+n21exp(−i=1∑nXi)
Marginal density of X is
m(x)=∫01exp(−i=1∑n(xi−θ))dθ=n1exp(n−i=1∑nXi)−n1exp(−i=1∑nXi)
So the estimator is
θ^=n1exp(n−∑i=1nXi)−n1exp(−∑i=1nXi)n2n−1exp(n−∑i=1nXi)+n21exp(−∑i=1nXi)=nen−n(n−1)en+1