《Image Super-Resolution Using Very Deep Residual Channel Attention Networks》

一、论文

《Image Super-Resolution Using Very Deep Residual Channel Attention Networks》

卷积神经网络(CNN)的深度对于图像超分辨率(SR)至关重要。 但是,我们观察到更深层次的图像SR网络更难训练。 低分辨率输入和特征包含丰富的低频信息,这些信息在各个通道之间均被平等对待,因此阻碍了CNN的表示能力。 为了解决这些问题,我们提出了非常深的残留频道关注网络(RCAN)。 具体来说,我们提出了残差残差(RIR)结构以形成非常深的网络,该网络由几个具有较长跳过连接的残差组组成。 每个残差组包含一些残差块,它们具有短的跳过连接。 同时,RIR允许通过多个跳过连接来绕过大量的低频信息,从而使主网络专注于学习高频信息。 此外,我们提出了一种通道注意机制,通过考虑通道之间的相互依赖性来自适应地重新缩放通道方式的特征。 大量的实验表明,相对于最新方法,我们的RCAN具有更好的准确性和视觉效果。

总的来说,我们的贡献有三方面:(1)我们提出了非常深的残留通道注意网络(RCAN),以实现高精度的图像SR。  (2)我们提出了残差残差(RIR)结构来构建非常深的可训练网络。  (3)我们提出了通道注意(CA)机制,通过考虑特征通道之间的相互依赖性来自适应地重新缩放特征。

二、网络结构

《Image Super-Resolution Using Very Deep Residual Channel Attention Networks》

《Image Super-Resolution Using Very Deep Residual Channel Attention Networks》《Image Super-Resolution Using Very Deep Residual Channel Attention Networks》

三、代码

四、相关资料 

残差通道注意力网络 RCAN

RCAN Image Super-Resolution Using Very Deep Residual Channel Attention Networks-ECCV2018

RCAN 论文笔记